Jan Pablo Burgard (Trier University), María Dolores Esteban (University Miguel Hernández of Elche), Domingo Morales (University Miguel Hernández of Elche) and Agustín Pérez (University Miguel Hernández of Elche).
Abstract: The bivariate Fay–Herriot model is an area-level linear mixed model that can be used for estimating the domain means of two correlated target variables. Under this model, the dependent variables are direct estimators calculated from survey data and the auxiliary variables are true domain means obtained from external data sources. Administrative registers do not always give good auxiliary variables, so that statisticians sometimes take them from alternative surveys and therefore they are measured with error. We introduce a variant of the bivariate Fay–Herriot model that takes into account the measurement error of the auxiliary variables and we give fitting algorithms to estimate the model parameters. Based on the new model, we introduce empirical best predictors of domain means and we propose a parametric bootstrap procedure for estimating the mean squared error. We finally give an application to estimate poverty proportions and gaps in the Spanish Living Condition Survey, with auxiliary information from the Spanish Labour Force Survey.
Keywords: Multivariate models; Fay–Herriot model; small area estimation; measurement error; Monte Carlo simulation; poverty proportion; poverty gap.
Scientific articles
N. Allouch, Luis A. Guardiola, & A. Meca (2024). Measuring productivity in networks: A game-theoretic approach. Socio-Economic Planning Sciences, 91, 101783.
N. Allouch (University of Kent – School of Economics), Luis A. Guardiola (Departamento de Métodos Cuantitativos para la Economía y Empresa, Universidad de Murcia), Ana Meca (I.U. Centro de Investigación Operativa, Universidad Miguel Hernández de Elche) Abstract: Measuring individual productivity (or equivalently distributing the overall productivity) in a network structure of workers displaying peer effects has been [...]