[:es]Nuria Ramón (University Miguel Hernández of Elche), José L. Ruiz(University Miguel Hernández of Elche) and Inmaculada Sirvent (University Miguel Hernández of Elche).
Abstract.In benchmarking, organizations look outward to examine others’ performance in their industry or sector. Often, they can learn from the best practices of some of them and improve. In order to develop this idea within the framework of Data Envelopment Analysis (DEA), this paper extends the common benchmarking framework proposed in Ruiz and Sirvent (2016) to an approach based on the benchmarking of decision making units (DMUs) against several reference sets. We refer to this approach as cross-benchmarking. First, we design a procedure aimed at making a selection of reference sets (as defined in DEA), which establish the common framework for the benchmarking. Next, benchmarking models are formulated which allow us to set the closest targets relative to the reference sets selected. The availability of a wider spectrum of targets may offer managers the possibility of choosing among alternative ways for improvements,taking into account what can be learned from the best practices of different peer groups. Thus, crossbenchmarking is a flexible tool that can support a process of future planning while considering different managerial implications.
Keywords. Performance evaluation; Data envelopment analysis; Benchmarking; Target setting.[:]
Scientific articles
N. Allouch, Luis A. Guardiola, & A. Meca (2024). Measuring productivity in networks: A game-theoretic approach. Socio-Economic Planning Sciences, 91, 101783.
N. Allouch (University of Kent – School of Economics), Luis A. Guardiola (Departamento de Métodos Cuantitativos para la Economía y Empresa, Universidad de Murcia), Ana Meca (I.U. Centro de Investigación Operativa, Universidad Miguel Hernández de Elche) Abstract: Measuring individual productivity (or equivalently distributing the overall productivity) in a network structure of workers displaying peer effects has been [...]