[language-switcher]

J. Camacho, M. J. Cánovas, M. A. López, & J. Parra (2023). Robust and continuous metric subregularity for linear inequality systems. Computational Optimization and Applications, 86, 967-988.

J.Camacho (Operations Research Center, University Miguel Hernández of Elche), M.J. Cánovas (Operations Research Center, University Miguel Hernández of Elche), M.A. López (Department of Mathematics, University of Alicante; CIAO, Federation University, Ballarat, Australia) and J.Parra (Operations Research Center, University Miguel Hernández of Elche)
Abstract:
This paper introduces two new variational properties, robust and continuous metric subregularity, for finite […]

Cánovas, M.J., Parra, J. (2023). Lipschitzian Stability in Linear Semi-infinite Optimization. In: Amigó, J.M., Cánovas, M.J., López-Cerdá, M.A., López-Pellicer, M. (eds) Functional Analysis and Continuous Optimization. IMFACO 2022. Springer Proceedings in Mathematics & Statistics, vol 424. Springer, Cham.

M. J. Cánovas (Center of Operations Research, Miguel Hernández University of Elche) and J. Parra (Center of Operations Research, Miguel Hernández University of Elche)
Abstract:
This paper is intended to provide an overview of recent results by the authors, together with different collaborators, on quantitative measures of the Lispchitzian behavior of the feasible and the optimal (argmin) […]

Camacho, J., Cánovas, M. J., & Parra, J. (2023). Lipschitz upper semicontinuity in linear optimization via local directional convexity. Optimization, 72(8), 2091–2108.

J.Camacho (Operations Research Center, University Miguel Hernández of Elche), M.J. Cánovas (Operations Research Center, University Miguel Hernández of Elche) and J.Parra (Operations Research Center, University Miguel Hernández of Elche)
Abstract:
This work is focussed on computing the Lipschitz upper semicontinuity modulus of the argmin mapping for canonically perturbed linear programs. The immediate antecedent can be traced out […]