[language-switcher]

Joscha Krause, Jan Pablo Burgard (Department of Economic and Social Statistics, Trier University) and Domingo Morales (Operations Research Center, University Miguel Hernández of Elche)

Abstract: Assessing regional population compositions is an important task in many research fields. Small area estimation with generalized linear mixed models marks a powerful tool for this purpose. However, the method has limitations in practice. When the data are subject to measurement errors, small area models produce inefficient or biased results since they cannot account for data uncertainty. This is particularly problematic for composition prediction, since generalized linear mixed models often rely on approximate likelihood inference. Obtained predictions are not reliable. We propose a robust multivariate Fay–Herriot model to solve these issues. It combines compositional data analysis with robust optimization theory. The nonlinear estimation of compositions is restated as a linear problem through isometric logratio transformations. Robust model parameter estimation is performed via penalized maximum likelihood. A robust best predictor is derived. Simulations are conducted to demonstrate the effectiveness of the approach. An application to alcohol consumption in Germany is provided.