Título: Integración de funciones epi-puntiagudas no convexas es espacios localmente convexos
Ponente: David Salas Videla
Fecha: 19/06/2014 10:30h
Lugar: Sala de Seminarios, Edificio Torretamarit
Resumen:
We extend the results of Correa, Garcia and Hantoute, dealing with the integration of Fenchel subdifferential of nonconvex epi-pointed functions. We prove that the classical formula of Rockafellar in the convex setting is still valid in general locally convex spaces for an appropriate family of nonconvex epi-pointed functions, namely those we call SDPD. Our results use the Fenchel subdifferential of the involved functions to compare the corresponding closed convex envelopes. Some examples of SDPD functions are investigated. This analysis lead us to approach a useful family of locally convex spaces having a RNP-like property, referred to as the SDPD class.
Breve Bio:
David Salas Videla es estudiante de doctorado en la Universidad de Montpellier 2 (Francia) y en esta ocasión presenta un artículo elaborado en colaboración con Rafael Correa y Abderrahim Hantoute, ambos investigadores del Centro de Modelamiento Matemático (Chile).Title: Integration of nonconvex epi-pointed functions in locally convex spaces
Speaker: David Salas Videla
Date: 19/06/2014 10:30h
Location: Sala de Seminarios, Edificio Torretamarit
Abstract
We extend the results of Correa, Garcia and Hantoute, dealing with the integration of Fenchel subdifferential of nonconvex epi-pointed functions. We prove that the classical formula of Rockafellar in the convex setting is still valid in general locally convex spaces for an appropriate family of nonconvex epi-pointed functions, namely those we call SDPD. Our results use the Fenchel subdifferential of the involved functions to compare the corresponding closed convex envelopes. Some examples of SDPD functions are investigated. This analysis lead us to approach a useful family of locally convex spaces having a RNP-like property, referred to as the SDPD class.
Brief Bio
David Salas Videla es estudiante de doctorado en la Universidad de Montpellier 2 (Francia) y en esta ocasión presenta un artículo elaborado en colaboración con Rafael Correa y Abderrahim Hantoute, ambos investigadores del Centro de Modelamiento Matemático (Chile).
Novedades
Seminario CIO-Prometeo: Predicting chaotic dynamics with reservoir computing
Título: Predicting chaotic dynamics with reservoir computing Ponente: Ulrich Parlitz (Max Planck Institute for Dynamics and Self-Organization) Fecha y hora: 04/12/2024, 12:00 Inscripción online (cierre 30 minutos antes del inicio): https://forms.gle/dvaxftX815mttHvN9 Lugar: Sala de Seminarios del Edificio Torretamarit (CIO) y online Organizador: José María Amigó García Abstract: Reservoir computing utilizes the response of driven dynamical systems for predicting and analyzing time [...]