[:es]Lazcorreta Puigmartí, E. (Universidad Miguel Hernández); Botella, F. (Universidad Miguel Hernández); Fernández-Caballero, A (Universidad Castilla- La Mancha)
Abstract: This paper introduces a novel proposal to discover the best associative classification rules through studying the influence of the attributes used in robust catalogues. Notice that a catalogue is defined as a dataset free of duplicate records. Moreover, a robust catalogue is obtained when incomplete records and those with uncertainty are eliminated from a catalogue. Therefore, a robust catalogue is a collection of association rules with 100% confidence and unitary support. In this paper we demonstrate that robust catalogues contain the same association rules as the datasets from which they were obtained, but can be managed in memory without eliminating any data from the analysis. In fact, the experiments performed show that all robust catalogues contained in a classification dataset are easily obtained, providing millions of associative classification rules with 100% confidence to the expert researcher in data mining. © 2017 Elsevier Ltd[:]
Artículos Científicos
N. Allouch, Luis A. Guardiola, & A. Meca (2024). Measuring productivity in networks: A game-theoretic approach. Socio-Economic Planning Sciences, 91, 101783.
N. Allouch (University of Kent – School of Economics), Luis A. Guardiola (Departamento de Métodos Cuantitativos para la Economía y Empresa, Universidad de Murcia), Ana Meca (I.U. Centro de Investigación Operativa, Universidad Miguel Hernández de Elche) Abstract: Measuring individual productivity (or equivalently distributing the overall productivity) in a network structure of workers displaying peer effects has been [...]
0 Comments