[language-switcher]

Título: Caracterizaciones del cálculo subdiferencial convexo aproximado en Espacios de Banach
Ponente: Rafael Correa
Fecha: 19/06/2014   10:00h
Lugar: Sala de Seminarios, Edificio Torretamarit
Resumen:
We establish subdiferential calculus rules for the sum of convex functions de.ned on normed spaces. This is achieved by means of a condition relying on the continuity behavior of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to be also necessary in Banach spaces. These results extend both the classical formulas by Hiriart Urruty-Phelps and by Thibault.
Key words. Convex functions, approximate subdi¤erential, calculus rules, approximate variational principle.
Breve Bio:
El profesor Rafael Correa es Catedrático del departamento de Ingeniería Matemática de la Universidad de Chile e investigador en el Centro de Modelamiento Matemático, en Santiago de Chile.Title: Characterizations of convex approximate subdifferential calculus in Banach spaces
Speaker: Rafael Correa
Date: 19/06/2014   10:00h
Location: Sala de Seminarios, Edificio Torretamarit
Abstract
We establish subdiferential calculus rules for the sum of convex functions de.ned on normed spaces. This is achieved by means of a condition relying on the continuity behavior of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to be also necessary in Banach spaces. These results extend both the classical formulas by Hiriart Urruty-Phelps and by Thibault.
Key words. Convex functions, approximate subdi¤erential, calculus rules, approximate variational principle.
Brief Bio
El profesor Rafael Correa es Catedrático del departamento de Ingeniería Matemática de la Universidad de Chile e investigador en el Centro de Modelamiento Matemático, en Santiago de Chile.