
 
          Centro de 
     Investigación 
          Operativa 
 
 
 

 

 

I-2007-26 

Towards   personalized 
recommendation by two-step 
modified Apriori data mining 
algorithm 

 

Enrique Lazcorreta, Federico Botella  

and Antonio Fernández-Caballero 

 

  

September 2007 

 

 
 
ISSN 1576-7264 
Depósito legal A-646-2000 

 

Centro de Investigación Operativa
Universidad Miguel Hernández de Elche
Avda. de la Universidad s/n  



Towards personalized recommendation by

two-step modified Apriori data mining

algorithm

Enrique Lazcorreta a, Federico Botella a,

Antonio Fernández-Caballero b,c,∗

aOperations Research Center, University Miguel Hernández of Elche, Elche, Spain

bInstituto de Investigación en Informática de Albacete (I3A), Universidad de

Castilla-La Mancha, 02071-Albacete, Spain

cDepartamento de Sistemas Informáticos, Escuela Politécnica Superior de

Albacete, Universidad de Castilla-La Mancha, 02071-Albacete, Spain

Abstract

In this paper a new method towards automatic personalized recommendation based

on the behavior of a single user in accordance with all other users in web-based

information systems is introduced. The proposal applies a modified version of the

well-known Apriori data mining algorithm to the log files of a web site (primarily,

an e-commerce or an e-learning site) to help the users to the selection of the best

user-tailored links. The paper mainly analyzes the process of discovering association

rules in this kind of big repositories and of transforming them into user-adapted rec-

ommendations by the two-step modified Apriori technique, which may be described

as follows. A first pass of the modified Apriori algorithm verifies the existence of

association rules in order to obtain a new repository of transactions that reflect the



observed rules. A second pass of the proposed Apriori mechanism aims in discov-

ering the rules that are really inter-associated. This way the behavior of a user is

not determined by “what he does” but by “how he does”. Furthermore, an efficient

implementation has been performed to obtain results in real-time. As soon as a user

closes his session in the web system, all data are recalculated to take the recent

interaction into account for the next recommendations. Early results have shown

that it is possible to run this model in web sites of medium size.

Key words: Personalization, Data mining, Apriori-like algorithm,

Recommendation

1 Introduction

In recent years, companies have concentrated on understanding the needs

and expectations of their customers and grouping the existing and poten-

tial customers into classes with the purpose of improving the efficiency of

their marketing strategies and increasing their market share (Saglam et al.,

2006). Personalization has become a reality and is possible by using efficient

methods of data mining and knowledge discovery (Kim and Cho, 2007). To

date, a variety of recommendation techniques has been developed (Cho, Kim

and Kim, 2002). Through analyzing user related information, it is possible to

make a more accurate analysis of customer’s interest or preference. In most

cases, recommendation can be classified according to (1) whether customers

for whom we want recommendations are all customers or selective customers,

∗ Corresponding author. Tel: +34 967599200; fax: +34 967 599224
Email addresses: enrique@umh.es (Enrique Lazcorreta), federico@umh.es

(Federico Botella), caballer@dsi.uclm.es (Antonio Fernández-Caballero).

2



(2) whether the objective of recommendation is to predict how much a par-

ticular customer will like a particular product, or to identify a list of products

that will be of interest to a given customer (top-N recommendation problem),

and (3) whether the recommendation is accomplished at a specific time or

persistently.

The abundance of large data collections and the need to extract hidden knowl-

edge within them has triggered the development of algorithms to detect un-

known patterns in data sets (Han and Kamber, 2001). A paper (Ozmutlu,

Spink and Ozmutlu, 2002) reports results from a study using Poisson sam-

pling to develop a sampling strategy to demonstrate how sample sets selected

by Poisson sampling statistically effectively represent the characteristics of the

entire data set. Moreover, clustering analysis is a data mining technique devel-

oped for the purpose of identifying groups of entities that are similar to each

other with respect to certain similarity measures. In the past, different ways

to discover groups using clustering techniques have been proposed (Schafer,

Konstan and Riedl, 2001). Very often, they are based on different definitions

of similarity measure to represent the closeness between users. Users can also

be grouped based on the transactions they perform (Wang and Hwang, 2006).

In (Perkowitz and Etzioni, 2000) a cluster mining algorithm - an unsupervised

algorithm for efficiently identifying a small set of high-quality (and possibly

overlapping) clusters with limited coverage - is introduced.

Nevertheless, the existing researches could not afford to give a formal way for

capturing individual customer’s preference or associations among products

through web usage mining. Given a set of transactions where each transaction

is a set of items (itemset), an association rule implies the form X ⇒ Y , where

X and Y are itemsets; X and Y are called the body and the head, respectively.

3



The support for the association rule X ⇒ Y is the percentage of transactions

that contain both itemset X and Y among all transactions. The confidence

for the rule X ⇒ Y is the percentage of transactions that contain itemset

Y among transaction that contain itemset X. The support represents the

usefulness of the discovered rule and the confidence represents certainty of the

rule. Association rule mining is the discovery of all association rules that are

above a user-specified minimum support minsup and minimum confidence

minconf (Tseng and Lin, 2006). Apriori algorithm is one of the prevalent

techniques used to find association rules (Agrawal, Imielinski and Srikant,

1993) (Agrawal and Srikant, 1994). Apriori operates in two phases. In the first

phase, all itemsets with minimum support (frequent itemsets) are generated.

This phase utilizes the downward closure property of support. In other words,

if an itemset of size k is a frequent itemset, then all the itemsets below (k−1)

size must also be frequent itemsets. Using this property, candidate itemsets of

size k are generated from the set of frequent itemsets of size (k−1) by imposing

the constraint that all subsets of size (k − 1) of any candidate itemset must

be present in the set of frequent itemsets of size (k − 1). The second phase of

the algorithm generates rules from the set of all frequent itemsets.

Association rule mining, as originally proposed in (Agrawal, Imielinski and

Srikant, 1993) with its Apriori algorithm, has developed into an active re-

search area. Association rule discovery and classification are analogous tasks

in data mining, with the exception that classification main aim is the pre-

diction of class labels, while association rule mining discovers associations

between attribute values in a data set (Thabtah, Cowling and Hammoud,

2006). Many additional algorithms have been proposed for association rule

mining (e.g. (Pujari, 2001) (Lin and Kedem, 2002)). End users of association

4



rule mining tools encounter several well-known problems in practice. First,

the algorithms do not always return the results in a reasonable time. A fuzzy

mining algorithm based on the AprioriTid approach to find fuzzy association

rules from given quantitative transactions has been proposed for reduced time

complexity (Hong, Kuo and Wang, 2004). Further, the association rules sets

are sometimes very large. In (Palshikar, Kale and Apte, 2006) a concept called

a heavy itemset is proposed to compactly represent the association rules. An

algorithm named as BitTableFI (Dong and Han, 2006) has significant dif-

ference from the Apriori and all other algorithms extended from Apriori. It

compresses the database into BitTable, and with the special data structure,

candidate itemsets generation and support count can be performed quickly.

Also, mining association rules with multiple minimum supports is an impor-

tant generalization of the association rule mining problem. Instead of setting

a single minimum support threshold for all items, (Liu, Hsu and Ma, 1999)

allow users to specify multiple minimum supports to reflect the natures of

the items, and an Apriori-based algorithm, named MSapriori, is developed to

mine all frequent itemsets. In a recent paper (Hu and Chen, 2006), the same

problem is suited but with two additional improvements. Another approach is

the cluster-based association rule (CBAR) method (Tsay and Chiang, 2005),

aimed to create cluster tables by scanning the database once, and then clus-

tering the transaction records to the k-th cluster table, where the length of

a record is k. Moreover, the large itemsets are generated by contrasts with

the partial cluster tables. This not only prunes considerable amounts of data

reducing the time needed to perform data scans and requiring less contrast,

but also ensures the correctness of the mined results. In (Lee, Hong and Lin,

2005) another point of view about defining the minimum supports of itemsets

when items have different minimum supports is provided. The maximum con-

5



straint is used, and then a simple algorithm based on the Apriori approach

to find the large-itemsets and association rules under this constraint is intro-

duced. Another interesting proposal is to utilize methods and techniques from

Information Retrieval (IR) in order to assist data mining functions (Kouris,

Makris and Tsakalidis, 2005).

In this paper a new method towards automatic personalized recommendation

based on the behavior of a single user in accordance with all other users in

web-based information systems is introduced. The proposal applies a modified

version of the well-known Apriori data mining algorithm to the log files of a

web site to guide the users to the selection of the best user-tailored links. The

paper mainly analyzes the process of discovering association rules in this kind

of big repositories and of transforming them into user-adapted recommenda-

tions.

2 The Apriori2 approach

As stated before, the discovery of association rules between items of a trans-

action set has been undertaken by many researchers. However, when defining

user behavior patterns for one service (like a supermarket, an e-learning site,

or simply any website) we should not only base on the analysis of the items

composing their transactions. For instance, the behavior of a user in a website

can not be well-measured by the pages he visits (what); we also need to know

the way the user visits these pages (how), in order to differentiate him from

other users or to group him to other users with similar behavior. This leads to

take a step beyond from simple association rules discovery generated by the

users of the service, that is to say, the relationship existing between the whole

6



set of users and each one of their individuals has to be analyzed.

To perform this analysis the following steps are performed: (1) discovering ex-

isting association rules in the original repository of transactions; (2) rewriting

the original transactions to reflect all association rules that verify each one

of them; (3) analyzing differences existing between both sets of transactions

by means of statistical analysis; and, (4) discovering and using the existing

relations between rules discovered in step 1 in order to automatically divide

the set of transaction rules obtained in step 2.

We can define the behavior of a user at a web service with the data obtained

according to the manner he acts in the service, i.e. according to particular

rules verified by the user whilst he is interacting with the service. Next the

four steps of our approach are explained in detail.

2.1 Discovering existing association rules in the original repository of trans-

actions

Firstly, we use the original algorithm (Agrawal and Srikant, 1994) for discover-

ing the association rules between items generated by users, although we have

added some modifications to their implementation in order to obtain an ac-

ceptable performance without loosing any of the discovered data. The original

pseudocode by Agrawal and Srikant is offered in algorithm 1.

1) L1 = {large 1-itemsets};

2) for (k = 2;Lk−1 6= ∅; k + +) do begin

3) Ck = apriori-gen(Lk−1); //New candidates

4) forall transactions t ∈ D do begin

7



5) Ct = subset(Ck, t); //Candidates contained in t

6) forall candidates c ∈ Ct do

7) c.count++;

8) end

9) Lk = {c ∈ Ck|c.count ≥ minsup};

10) end

11) Answer =
⋃

k Lk;

Algorithm 1. The original Apriori algorithm

In the original algorithm apriori-gen is a function made up of two phases:

union and pruning. In the union phase (see algorithm 2), all k-itemsets can-

didates are generated.

insert into Ck

select p.item1, . . . , p.itemk−1, q.itemk−1

from Lk−1 p, Lk−1 q

where p.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1;

Algorithm 2. Union phase of the original Apriori

Now in the pruning phase (see algorithm 3), which gives the name to the

algorithm, all candidates generated in the union phase with some non-frequent

(k − 1)-itemset are removed.

8



forall itemsets c ∈ Ck

forall (k − 1)-subsets s of c do

if s /∈ Lk−1 then

delete c from Ck;

Algorithm 3. Pruning phase of the original Apriori

In algorithm 4 our particular new implementation of the union and pruning

phases for the Apriori algorithm is given. When joining the union and pruning

phases in a same function, many insert and delete operations in a dynamic

vector Ck are saved. Also by relaxing the pruning many search operations in

tree L of frequent k-itemsets are saved.

insert into Ck

select c = {p.item1, . . . , p.itemk−1, q.itemk−1}

from Lk−1p, Lk−1q

where (p.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1)

and

(p.itemk−1, q.itemk−1) ∈ L2

Algorithm 4. Union and pruning phases of the modified Apriori

Another important adjustment to the original Apriori algorithm is the extrac-

tion of the existing rules (function genrules) in the repository of transactions.

Again, we offer the code for the original Apriori in algorithm 5.

// Simple Algorithm

forall large itemsets lk, k ≥ 2 do

call genrules(lk, lk);

9



// The genrules generates all valid rules ã ⇒ (lk − ã), for all ã ⊂ am

procedure genrules(lk: large k-itemset, am: large m-itemset)

1) A = {(m− 1)−itemsets am−1 | am−1 ⊂ am};

2) forall am−1 ∈ A do begin

3) conf = support(lk)/support(am−1);

4) if (conf ≥ minconf) then begin

7) output the rule am−1 ⇒ (lk − am−1), with confidence = conf and

support = support(lk);

8) if (m− 1 > 1) then

9) call genrules(lk, am−1); // to generate rules with subsets of am−1

as the antecedents

10) end

11) end

Algorithm 5. The original Apriori genrules

To denote a rule, we use the notation

Ri = {ai ⇒ ci} (1)

where Ri is the i-th rule, ai the antecedent k-itemset and ci the consequent

k-itemset.

By

lki
= ai ∪ ci (2)

we denote the k-itemset that defines rule Ri.

genrules takes two k-itemsets as parameters: the first one is always lki
and

10



the second is a subset of lki
, from which the antecedents of the rules derived

from lki
are extracted. Each time genrules is called, we obtain the confidence

of a rule as am ⇒ ci = lk − am, so we need two calls to the support function.

This function has to pass over L until the level determined by the number of

items of the k-itemset received: k + (k −m) searches.

This characteristic makes a little bit inefficient the original algorithm due

to the way the repository L of frequent k-itemsets is stored. Therefore we

have to search for the items that compose lk from the root of the repository.

Moreover we have added the support of lk as parameter to genrules to get a

more efficient implementation of the algorithm, which avoids many calls to the

support function (only one call is performed before processing each k-itemset

of L and in the multiple recursive callings this function is not called again

with this parameter).

The creators of the Apriori algorithm followed the next statement:

If a ⇒ (l − a) does not hold, neither does ã ⇒ (l − ã) for any ã ⊂ a. By

rewriting, it follows that for a rule (l− c) ⇒ c to hold, all rules of the form

(l− c̃) ⇒ c̃ must also hold, where c̃ is a non-empty subset of c. For example,

if the rule AB ⇒ CD holds, then the rules ABC ⇒ D and ABD ⇒ C must

also hold.

After that, they proposed a second method, quicker under certain circum-

stances: when minconf is large, if they can detect that conf(ABC ⇒ D)<

minconf then they assume that it is not necessary to check the rules AB ⇒
CD, AC ⇒ BD, BC ⇒ AD, A ⇒ BCD, B ⇒ ACD, C ⇒ ABD. In the case

they want to detect rules without high confidence, this is rather a disadvan-

tage that supposes an additional verification and will slow down the execution

11



of the algorithm.

Moreover, we improve the performance of the algorithm by analyzing the

characteristics of the rules generated by it. Let’s see an example:

Let the k-itemset be lk = {1, 2, 3, 4, 5, 6}.
• genrules(lk, lk) will recursively call genrules(lk, {1, 2, 3, 4, 5}) and this

will call recursively genrules(lk, {1, 2, 3, 4}).
• Later, the initial reference will call genrules(lk, {1, 2, 3, 4, 6}) and this

will make another recursive call to genrules(lk, {1, 2, 3, 4}).
Afterwards, genrules(lk, {1, 2, 3, 4}) is called twice, and thus we will get

duplicates of all the performed callings with the subsets of {1, 2, 3, 4} as the

second parameter. This generates a great number of searches and repeated

operations, which will be of exponential order k.

In our implementation this problem is overcome by the use of a static vector

where the analyzed subsets of lk are stored as second parameter. In order to

apply these properties we have redefined the algorithm as depicted in algo-

rithm 6.

forall large itemsets lk, k ≥ 2 do

supp l k = support(lk);

call genrules(lk, lk, supp l k);

// The genrules generates all valid rules ã ⇒ (lk − ã), for all ã ⊂ am

procedure genrules(lk: large k-itemset, am: large m-itemset, supp l k:

double)

x) static a m processed; //set containing the sets of lk processed in previ-

ous calls to genrules

12



x) if (m == k)

x) a m processed.clear(); //Initialize a m processed for each new lk

1) A = {(m− 1)−itemsets am−1 | am−1 ⊂ am};

2) forall am−1 ∈ A do begin

x) if am−1 ∈ a m processed then

x) continue;

x) a m processed.add(am−1);

3) conf = support l k/support(am−1);

4) if (conf ≥ minconf) then begin

7) output the rule am−1 ⇒ (lk − am−1), with confidence = conf and

support = support(lk);

8) if (m− 1 > 1) then

9) call genrules(lk, am−1, supp l k); // to generate rules with subsets

of am−1 as the antecedents

10) end

11) end

Algorithm 6. The modified Apriori genrules

The results obtained in several executions of the original vs. our modified

Apriori algorithm are shown in figures 1 and 2.

As you may appreciate, when getting all existing rules in the repository

(minConf = 0%) the execution time is reduced between a 1, 276% and a

13, 459% as we only analyze once the rules when the k-itemsets that gener-

ate the rules appear at first time in L. The original algorithm repeats the

analysis of rules and results overloaded by a 12, 309%, because even with the

improvement proposed by the authors no rules are excluded in most of the

13



minconf
0 5 25 50 75 90

r
u
le

s

0

905 498

1 304 152

1 442 456

757 085

870 464

340 375

137 917

original

modified

rules found

minconf

0 5 25 50 75 90

m
il
li
s
e
c
o
n
d
s

0

3 547

6 250

10 562

3 047

4 766

6 938

original

modified

Fig. 1. Rules analyzed by the original vs. our modified Apriori algorithm along time

using foodmart database with minsup = 0.005%.

minconf

0 5 25 50 75 90

r
u
le

s

0

1 751 296

5 912 979

401 096

original

modified

rules found

minconf

0 5 25 50 75 90

m
il
li
s
e
c
o
n
d
s

8 907

35 343

59 171

2 812

4 374

original

modified

Fig. 2. Rules analyzed by the original vs. our modified Apriori algorithm along time

using T40I10D100K database with minsup = 1%.

analysis performed. Our modified algorithm does not check any extra rule

when minconf is set to 0%. We also want to highlight that the execution

time of our modified algorithm is not excessive at all, so it could be executed

in real time. If applied to the transactions performed by same user or group of

users with homogeneous behavior in a website, this modified algorithm even

14



gets lower execution times.

2.2 Rewriting transactions to return association rules verified by each trans-

action

It is more appropriate to study the behavior of a user according to the rules he

“verifies” rather than to the items themselves. Suppose that a customer uses to

enter in a website on Mondays and visits pages A, B and C and next a series of

pages P1. But he visits pages A,G and H on Fridays and next another series of

pages P2. Suppose also that the pages of P1 and P2 are not frequently presented

with page A, and as our recommender system is not considering temporal

variables, we can not detect if it is Monday or Friday. Thus when a user enters

in a website and requests for page A, probably we will recommend him to visit

pages B or G, if we were using the traditional methods of recommendation. If

the user then visits page G, the method will suggest a link to page H as the

more probable, next some links to pages P2 and finally another link to page B

with less probability to be visited by the user. Therefore the fact to visit page

A is not as significant as the possibility to use the behavioral rules already

stored (the existing relations between rules containing the k-itemsets AGH and

P2). The cue idea is the capacity of analyzing the rules independently of the

number of items they contain, providing a means to get the relations between

two rules composed by the different items and using only the transactions

supplied by the users.

If we study the rules verified by each original transaction of D, we can define a

set of rules (R) that contains one line for each verified rule of each transaction

of D. The goal of this conversion D Ã R is to study again the group of rules

15



containing R by means of Apriori algorithm.

At the beginning, this task is simply an exploratory task as we need many

hours to convert file R into huge repositories of data and we have to do it

for different support and confidence thresholds. Rule repositories use to be

bigger than transaction repositories. Indeed, if a transaction verifies a rule

that contains a given k-itemset lk, then it will verify all rules of the k-itemsets

contained in lk. For example, if transaction ABCD generates one rule, then

it can generate the fifty rules inferred by their subsets:

• 14 rules with 4 items: ABC ⇒ D, ABD ⇒ C, . . . D ⇒ ABC.

• 24 rules with 3 items: AB ⇒ C, . . . CD ⇒ B.

• 12 rules with 2 items: A ⇒ B, . . . D ⇒ C.

If we use a low confidence threshold, one transactio of D with 3 items will

define twelve rules in R, one transaction of D with 4 items will define fifty

rules in R, and then R will grow exponentially according to the length of

transactions of D.

At this point, the impressive size of R leads to an exploratory study of the

existing differences between both repositories for proposing a reduction of data

contained in R without losing any information contained in it.

2.3 Analyzing existing differences between both repositories using statistical

exploration

In previous section 2.1 a modification of the rule generating algorithm has

been introduced, enabling to work with low minconf values. The reason of

16



searching this reduction (sometimes it is even a removal) of minimal confidence

may be understood by analyzing the results shown in figure 3. As the value of

minconf is increased we lose significance in the obtained rules; for instance,

although we use a minimum support of 5% the obtained rules from repository

T40I10D100K employ a maximum of 32.6% of the original transactions. That

is, the data used in our recommender system ignore more than 67% of the

original data.

foodmart 0.005% T40I10D100K 5%

minconf

0 5 25 50 75 90

#
t
r
a
n
s
a
c
t
io

n
s

0

27 501

50 687

58 418

D

R

minconf
0 5 25 50 75 90

#
t
r
a
n
s
a
c
t
io

n
s

0

29 919
32 558

100 000

D

R

T10I4D100K 1% T10I4D100K 0.5%

minconf
0 5 25 50 75 90

#
t
r
a
n
s
a
c
t
io

n
s

1 035
7 087

100 000

D

R

minconf
0 5 25 50 75 90

#
t
r
a
n
s
a
c
t
io

n
s

0

14 498
19 805
23 493

49 301

60 618

100 000

D

R

Fig. 3. Number of transaction of R vs. D

We have found many approaches to deal with huge sets of transactions that

apply easy statistical techniques based on frequency to reduce the dimension

17



of the problem to solve. However some details are not considered enough times;

hence, the results are only meaningful to a reduced group of individuals from

the population in our study.

In this work we use the minimum support and confidence values that a con-

ventional personal computer is able to process without problems of overload

and being able to process the highest number of individuals of the popula-

tion studied, so we can not analyze directly the set R. Then we propose a

new algorithm to reallocate the information of R and nevertheless capable of

processing the whole set R.

2.4 Automatic division of the repository of rules

Many approaches about methods to divide the repository of original data exist

nowadays, but all of them are based on a highest control and classification

of the set of items available to the system. Our proposal does not use this

additional information because it is obtained from a system manager and not

from system usage data itself. We define a set of families of rules to divide the

repository of rules and group those rules that link users when interacting with

the system. The proposed algorithm is detailed next.

(1) Select the rule of major support; in case of draw, select the rule of highest

confidence and in case of another draw, select the rule that contains more

items.

R1|supp(R1) =

maxi{supp(Ri)} ∧
(conf(R1) = maxj{conf(Rj)|supp(Rj) = supp(R1)})

This rule will be the principal element of the first family of rules, F1.

18



(2) Divide R into subsets of transactions. The first repository R1 will con-

tain all transactions with the rule R1 and the second repository R∞ will

contain the remaining transactions.

(3) Run the Apriori algorithm on R1 and apply step 1 again to select R2,

the rule with highest frequency jointly with R1.

(4) Check the support of R2 into R∞: if the support of R2 into R1 is greater

than the support in R∞, then add R2 to family F1; in other case, remove

R2 from R1.

(5) Go to step 3 while there are rules still not classified in R1.

When the definition of the first family of rules has been accomplished, remove

all rules belonging to F1 and all empty transactions from the original repos-

itory of rules R. Next the second family of rules is constructed in the same

manner. The algorithm finishes when R∞ has no rules associated with other

rules, i.e. when all transactions of R∞ possess only one rule.

2.5 Our recommender system proposal

Finally, we have defined a recommender system where our two-step modified

Apriori algorithm has been applied. The main goal is to obtain personal rec-

ommendations for the users visiting our educational website in link format

and in real time. The recommendation process can be defined as follows:

(1) A user enters into the system and selects item A.

(2) The system can only use the information collected about its proper items,

that is to say the original rules with A as antecedent – this is the classical

recommendation using association rules. Thus, the first recommendation

19



will be solely based on frequency (the system will recommend the con-

sequents of the rules with the highest confidence that have item A as

antecedent).

(3) The user selects a second item B.

(4) Now we can already use the new information about the behaviors of the

user population. We obtain the rules derived from the k-itemset lk and

search for the family which belongs to it, Fi.

• If Fi contains rules derived from the rules accomplished by the user in

his current visit, then there is a confidence of 100% between the dis-

covered rules and the rules already verified by the user. In this case the

system recommends the items of the discovered rules with the highest

support. Unlike in more classical methods, here we discover the rules

that have no items selected as antecedents, and this is very important

as the performed analysis completely ignores the selection order of the

items.

• If Fi does not contain such a kind of rules, the rules with highest confi-

dence (and support in case of draw) in relation to the rules verified by

the user are used. In addition, in order to solve the classical problem of

discovering recommendations based on the antecedent, it is possible to

find rules with any items already selected by the user. This can not be

accomplished with the classical method.

(5) The user selects a third item C.

(6) We proceed as in step 4, but now looking for one or more families accord-

ing to derived rules from k-itemset lk = {A,B,C}.

This way is guiding us to new experiences within our educational systems,

where users seem to feel a little more comfortable in their interactions with

20



the system. They are able to perform at least one task more directly when use

the recommended links offered by the system.

3 Conclusions

In this paper a new method towards automatic personalized recommendation

based on the behavior of a single user in accordance with all other users in

web-based information systems has been introduced.

The proposal introduces a modified version of the well-known Apriori data

mining algorithm to the log files of a web site to guide the users towards

the selection of the best user-tailored links. The paper mainly analyzes the

process of discovering association rules in this kind of big repositories and of

transforming them into user-adapted recommendations. The four main steps

of our approach have been presented in detail. These are: (1) Mining the

association rules present in the original transactions repository. The modified

Apriori algorithm introduced enables mining the association rules in real-time.

(2) Rewriting the transactions in such a way that they reflect the association

rules verified for each transaction. (3) Analyzing the differences between both

repositories by means of a statistical study. (4) Mining the association rules

among the new transactions through a second run of the modified Apriori

algorithm.

Most association rule mining algorithms suffer from the twin problems of too

much execution time and generating too many association rules. Although

conventional Apriori algorithm can discover meaningful itemsets and construct

association rules, it suffers the disadvantage of also generating numerous can-

21



didate itemsets that must be repeatedly contrasted with the entire database.

The processing of the conventional algorithm also utilizes large amounts of

memory. Performance also is influenced, since the database is repeatedly read

to contrast each candidate itemset with all of the transaction records in the

database. In this paper, we have proposed a solution to address both problems.

Finally, our proposal has established a basis towards personalized recommen-

dation. Our paper shows that our approach can provide better recommenda-

tion services by analyzing the behavior of a single user in accordance with all

other users in web-based information systems.

Acknowledgements

This work is supported in part by the Spanish Junta de Comunidades de

Castilla-La Mancha PAI06-0093 grant.

References

Agrawal, R., Imielinski, T. and Swami, A. Mining association between sets of

items in massive database. International Proceedings of the ACM-SIGMOD

International Conference on Management of Data, 207–216, 1993.

Agrawal, R. and Srikant, R. Fast algorithms for mining association rules. Pro-

ceedings of the International Conference on very large Data Bases, 407–419,

1994.

Cho, Y.H., Kim, J.K. and Kim, S.H. A personalized recommender system

based on web usage mining and decision tree induction. Expert Systems

with Applications, 23:329–342, 2002.

22



Dong, J. and Han, M. BitTableFI: An efficient mining frequent itemsets algo-

rithm. Knowledge-Based Systems, in press, 2006.

Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan

Kaufmann Publisher, 2001.

Hong, T.P., Kuo, C.S. and Wang, S.L. A fuzzy AprioriTid mining algorithm

with reduced computational time. Applied Soft Computing, 5:1–10, 2004.

Hu, Y.H. and Chen, Y.L. Mining association rules with multiple minimum

supports: a new mining algorithm and a support tuning mechanism. Deci-

sion Support Systems, 42:1–24, 2006.

Kim, K.J. and Cho, S.B. Personalized mining of web documents using link

structures and fuzzy concept networks. Applied Soft Computing, 7:398–410,

2007.

Kouris, I.N., Makris, C.H. and Tsakalidis, A.K. Using Information Retrieval

techniques for supporting data mining. Data & Knowledge Engineering,

52:353–383, 2005.

Lee, Y.C., Hong, T.P. and Lin, W.Y. Mining association rules with multiple

minimum supports using maximum constraints. International Journal of

Approximate Reasoning, 40:44–54, 2005.

Lin, D. and Kedem, Z.M. Pincer-search: an efficient algorithm for discovering

the maximum frequent set. IEEE Transactions on Knowledge Data Engi-

neering, 14:553–556, 2002.

Liu, B., Hsu, W. and Ma, Y. Mining association rules with multiple minimum

supports. Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 337–341, 1999.

Ozmutlu, H.C., Spink, A. and Ozmutlu, S. Analysis of large data logs: an ap-

plication of Poisson sampling on excite web queries. Information Processing

and Management, 38:473–490, 2002.

23



Palshikar, G.K., Kale, M.S. and Apte, M.M. Association rules mining using

heavy itemsets. Data & Knowledge Engineering, in press, 2006.

Perkowitz, M. and Etzioni, O. Towards adaptive Web sites: Conceptual frame-

work and case study. Artificial Intelligence, 118:245–275, 2000.

Pujari, A.K. Data Mining Techniques. University Press, 2001.

Saglam, B., Salman, F.S., Sayin, S. and Türkay, M. A mixed-integer pro-

gramming approach to the clustering problem with an application in cus-

tomer segmentation. European Journal of Operational Research, 173:866–

879, 2006.

Schafer, J., Konstan, J. and Riedl, J. E-commerce recommendation applica-

tions. Data Mining and Knowledge Discovery, 5:115–153, 2001.

Thabtah, F., Cowling, P. and Hammoud, S. Improving rule sorting, predictive

accuracy and training time in associative classification. Expert Systems with

Applications, 31:414–426, 2006.

Tsay, Y.J. and Chiang, J.Y. CBAR: an efficient method for mining association

rules. Knowledge-Based Systems, 18:99–105, 2005.

Tseng, M.C. and Lin, W.Y. Efficient mining of generalized association rules

with non-uniform minimum support. Data & Knowledge Engineering, in

press, 2006.

Wang, Y., Lim, E.P.and Hwang, S.Y. Efficient mining of group patterns from

user movement data. Data & Knowledge Engineering, 57:240–282, 2006.

24


