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Statement of Scope and purpose
It has long been recognized that traditional deterministic optimization is not suitable
for capturing the truly dynamic behavior of most real-life problems, given the uncer-
tainty of the parameters that represent information about the future. Many of these
problems, planning under uncertainty, have logical constraints that require 0–1 vari-
ables for their formulation. The solution of this type of problems can be performed via
Stochastic Integer Programming by using scenario tree analysis. Given the dimensions
of the Deterministic Equivalent Model (DEM) of the stochastic problem, some kinds of
decomposition approaches can be considered by exploiting the structure of the models.
Traditional decomposition schemes, such as Benders and Lagrangean approaches, do
not seem to provide the solution for large scale problems (mainly in the cardinality of
the scenario tree) in affordable computing effort. In this work we present a Stochastic
Dynamic Programming approach, specially suited for exploiting the structure of the
scenario tree and, thus, very amenable for solving very large-scale DEMs. A tactical
production planning problem is used as a pilot case, whose structure is not exploited
by the proposed approach, so that it has general applicability.

Abstract
The Stochastic Dynamic Programming approach that we present utilizes the scenario
tree in a back-to-front scheme. It obtains the solution of the multi-period stochastic
problems related to the subtrees whose root nodes are the starting nodes (i.e., scenario
groups) in each given stage along the time horizon. Each subproblem considers the
effect of the stochasticity of the uncertain parameters from the periods of the given
stage, by using curves that estimate the expected future value (EFV) of the objective
function. Each subproblem is solved for a set of reference levels of the variables that
also have nonzero elements in any of the previous stages besides the given stage. An
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appropriate sensitivity analysis of the objective function for each reference level of the
linking variables allows us to estimate the EFV curves for the scenario groups from the
previous stages, until the curves for the first stage are computed. An application of
the scheme to the production planning problem with logical constraints is presented.
The aim of the problem consists of obtaining the tactical production planning over the
scenarios along the time horizon. The expected total cost is minimized to satisfy the
product demand. Some computational experience is reported. The proposed approach
compares favorably for very large-scale instances with a state-of-the-art optimization
engine.

Keywords: Stochastic dynamic programming, scenario tree, mixed 0–1 model, tactical
production planning.

* This research has been partially supported by grant GRUPOS79/04 from the Generalitat Va-

lenciana, Spain.

1 Introduction

Let the following dynamic multi-linking constraint deterministic program,

min
∑

t∈T

ctxt

s.t.
∑

t∈T :t≤τ

At
τxt = bτ ∀τ ∈ T

xt ∈ X ∀t ∈ T ,

(1.1)

where T is the set of periods in a given time horizon, xt is the vector of the variables
related to time period t, ct is the row vector of the objective function coefficients, At

τ

is the constraint matrix related to time period τ for the variables xt, X is the set
of feasible solutions including the nonnegativity and the 0–1 values for the variables,
and bτ is the right-hand-side (rhs) vector for the constraints related to time period τ ,
for τ ∈ T , all with the appropriate dimensions. A particular case for variables with
nonzero elements in constraints related to two time periods, not necessarily consecutive,
is presented in [10] for the case of multi-level product supplying with a transportation
time interval greater than two periods. A typical case with variables having nonzero
elements in constraints related to two consecutive time periods is the stock of goods in
one period to be used in the next one, see [2, 12], among many others. See also section
5 below.

However, very frequently some of the parameters (mainly, the objective function
coefficients and the rhs) are not known with certainty when the decision is to be made.
Given today’s state-of-the-art optimization tools, deterministic mixed integer programs
(MIP) should not present major difficulties for solving moderate size cases, at least.
Moreover, it has long been recognized that traditional deterministic optimization is not
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suitable for capturing the truly dynamic behavior of most real-life applications. The
main reason is that such applications involve, as previously stated, data uncertainties
which arise because information that will occur in subsequent decision stages is not
available to the decision maker when the decision must be made. For our purposes it
suffices to consider the uncertainty of the vectors b and c. The stochastic problem will
be treated by using a scheme, such that the parameters uncertainty is visualized by a
scenario tree.

Stochastic Integer Programming has a broad application field and is flourishing in
such sectors as finance, telecommunications, hydrothermal electric generation, oil, hy-
drocarbon and chemical supplying, transformation and distribution logistics, strategic
and tactical production planning, supply chain management, site location in addition
to other sectors. See particularly the books [14, 24, 26, 28], among others. Given the
dimensions of the cases, some kinds of decomposition approaches are considered, most
of them based on Benders, Lagrangean and Branch-and-Fix Coordination decomposi-
tion schemes for the structured mixed 0–1 Deterministic Equivalent Model (DEM); for
recommended text books on Stochastic Programming, see [5, 13, 15], among others.

Moreover, decomposition schemes based on the above approaches do not seem to
provide the solution for large-scale problems (mainly, in the scenario tree) in reason-
able computing effort. Alternatively, some kinds of Stochastic Dynamic Programming
(SDP) has been used for solving water resources management problems, see in a dif-
ferent context [6, 7, 8, 11, 16]. See in [18, 19] the work inspiring this paper.

The purpose of this paper is to present an SDP approach that utilizes a scenario
tree back-to-front scheme, and obtains the solution of the multi-period stochastic mixed
0–1 subproblems related to the subtrees whose root nodes are the starting nodes (i.e.,
scenario groups) in each stage along the time horizon. Each subproblem considers the
effect of the stochasticity of the uncertain parameters from the given stage, by using
curves that give the Expected Future Value (EFV) of the objective function. Each
subproblem is solved for a representative set of reference levels of the linking variables
between the previous stages and a given one. An appropriate sensitivity analysis of
the objective function for a set of reference levels of the variables allows for estimating
the EFV curves for the scenario groups from the previous stages, until the curves for
the first stage are computed. In this way, the EFV curves of the variables for the
implementable time periods (i.e., stage 1) are obtained by considering all scenarios,
but without being subordinated to any of them. The solution to be obtained for
the first stage considers the influence of the scenarios by using the EFV curves that
have been obtained. So, the original mixed 0–1 problem is broken down into as many
subproblems as subtrees we have in the scenario tree where the roots are the starting
nodes of each stage. The 0–1 variables and the continuous variables are allowed for at
any stage in the time horizon. The scope of this paper only considers the continuous
linking variables.

Additionally, an application of the proposed methodology is considered for the
tactical production planning problem. This application will be used as a pilot case to
assess the validity of the scheme proposed in the paper. The goal consists of determining
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the production and stocking of a set of products to satisfy an uncertain demand along
a time horizon, at a minimum expected cost, subject to resource availability and logical
constraints, among others. The uncertain parameters are the product cost and demand
and the resource availability along the time horizon. The uncertainty is represented
by a scenario tree. Two versions of the DEM are presented as multistage mixed 0-
1 programs, where the 0-1 variables are the tactical variables (decisions on products
and lot sizing), and the continuous variables represent the production, stock and lost
demand at each time period. The proposed approach compares favorably with a state-
of-the-art optimization engine for very large-scale DEM instances (over one million
0-1 variables and three million continuous variables).

The remainder of the paper is organized as follows. Section 2 formally introduces
the problem to be solved. Section 3 presents the SDP algorithmic framework for
problem solving, and introduces the concepts to be used for obtaining the EFV curves.
Section 4 proposes the scheme for computing them. Section 5 presents the production
planning problem. Section 6 reports on the computational experience. Finally, section
7 concludes.

2 Problem statement

Let the scenario tree shown in Figure 1 represent the stochasticity of the problem to
be dealt with. Each node in the figure represents a point in time where a decision can
be made. Once a decision is made, some contingencies can arise (in this example the
number of contingencies is three for time period t = 5), and information related to
these contingencies is available at the beginning of the period. Each root-to-leaf path
in the tree represents one specific scenario and corresponds to one realization of the
whole set of the uncertain parameters. Each node in the tree can be associated with
a scenario group, such that two scenarios belong to the same group from a given time
period provided that they have the same realizations of the uncertain parameters up
to the period. Accordingly with the non-anticipativity principle [5, 21], the scenarios
that belong to the same group at a given time period should have the same value for
the related variables with the time index up to the period.

Let the following notation related to the scenario tree be used throughout the paper:

Ω, set of scenarios, consecutively numbered. For instance, the path {1, 2, . . . , 5, 8, 14}
gives a scenario, that is customarily named scenario 14.

G, set of scenario groups, consecutively numbered.

Gt, set of scenario groups in time period t, for t ∈ T (Gt ⊆ G).

Ωg, set of scenarios in group g, such that the scenarios that belong to the same group
are identical in all realizations of the uncertain parameters up to period t(g), for
g ∈ G (Ωg ⊆ Ω).

Kg, set of scenario groups {k} such that Ωg ⊆ Ωk, for g ∈ G (Kg ⊂ G). That is, set of
scenario groups (one for each time period), such that the set of scenarios in group
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t = 1 2 3 4 5 6 7

e = 1 e = 2

1 2 3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ω = Ω1 = {14, 15, . . . , 25}

G5 = {5, 6, 7}; t(12) = 6

K13 = {7, 4, . . . , 1}

A2 = {5, 6, 7};A3 = {5, 6, 7}; ρ(12) = 7

C5 = {5, 8, 9, 14, . . . , 17}

Figure 1: Multi-period scenario tree
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g is included in the set of scenarios that belong to each of the groups {k}. Notice
that the (sole) ancestor path from the associated node with scenario group g to
the root node in the given scenario tree passes through all the associated nodes
with the scenario groups in Kg. From now on we will indistintly use nodes in the
scenario tree and scenario groups.

ρ(g), immediate ancestor node of node g in the scenario tree. Note ρ(g) ∈ Kg.

t(g), time period for scenario group g, for g ∈ G. Note g ∈ Gt(g).

E , set of stages in the given time horizon. Note: A stage is included by a set of
consecutive time periods.

Ge , set of scenario groups from stage e, for e ∈ E .

Ae, set of scenario groups associated with the root nodes from stage e, for e ∈ E .
(Ae ⊆ Ge)

Ag, set of successor nodes of node g such that they belong to set Ae+1, for g ∈ Ge, e =
1, . . . , |E| − 1.

Ca, set of successor nodes in the subtree whose root is node a such that they belong
to set Ge, including itself, for a ∈ Ae, e ∈ E .

Sg, set of successor nodes in the subtree whose root is node g, including itself, for
g ∈ G.

Pk
g , set of successor nodes in the path from node g to node k, for k ∈ Sg, g ∈ G.

In order to present the stochastic version of program (1.1), let the following notation
be used for the variables and the uncertain parameters:

Variables:

xg, variables vector under scenario group g, for g ∈ G. It replaces the variable xt(g) in
the deterministic model.

Uncertain parameters:

cg, vector of the objective function coefficients for the variables xg under scenario group
g, for g ∈ G. It replaces the vector ct(g) in the deterministic model.

bg, rhs of the constraint system under scenario group g, for g ∈ G. It replaces the
vector bt(g) in the deterministic model.

Let also wg denote the weight factor representing the likelihood that is associated with
scenario group g, for g ∈ G.

The Deterministic Equivalent Model (DEM) of the multi-period stochastic program
with complete recourse for optimizing the expected objective function value over the
set of scenarios for program (1.1) has the following so-called compact representation,
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min
∑

g∈G

wgcgxg

s.t.
∑

k∈{g}
S

Kg

A
t(k)
t(g)x

k = bg ∀g ∈ G

xg ∈ X ∀g ∈ G.

(2.1)

3 Algorithmic framework for using the EFV curves

The proposed scheme consists of computing the EFV curves for the scenario groups at
the previous stages of a given one. The curves estimate the impact of the decisions to
be made in a given stage on the objective function value related to the future stages.

The strategy for computing the curves is based on a recursive procedure for using
the state variables. It considers sets of reference levels for the linking variables between
stages, and obtains the EFV curves for the scenario groups at any stage, say, e′ < e
for e = |E|, . . . , 2 by using the curves obtained for stage e. The subproblems attached
to the subtrees given by node set Ca, ∀a ∈ Ae, for any e = 2, . . . , |E| share the same
reference levels of the linking variables from node k such that a ∈ Ak. So, the curves
are obtained as the average from the curves that are computed by using the scenario
subtrees at stage e.

An ad-hoc sensitivity analysis to be performed by truncating the Taylor series
expansion of the objective function around the values of the linking variables in the
given set of reference levels provides the information for computing the EFV curves.
By using this back-to-front mechanism down to the second stage, the EFV curves are
obtained for the first stage. Note: By construction, there is only one scenario path in
the first stage.

Let Ze−1,k denote the set of the reference levels for the values of the linking variables
xk for k ∈ Ka, a ∈ Ae between the time periods under the scenario groups from
the previous stages and stage e, for e = |E|, . . . , 2. A multi-period complete recourse
stochastic subproblem, say, Paz must be solved for the scenario subtree headed by
node, say, a for a ∈ Ae in stage e (being Ca the related set of nodes) for each reference
level z ∈ Ze−1,k of the variables’ vectors xk ∀k ∈ Ka. For this purpose, let xkz denote
the value of the vector xk. The objective function is also included by the EFV curves
associated with the scenario groups, say, g for g ∈ Ca. We propose to estimate the
curve, say, λ(xk) as an upper envelop of a finite family of linear functions, continuous
and convex but not differentiable everywhere. The program to solve can be expressed,
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Paz : min σaz =
∑

g∈Ca

wg
(
cgxg + λg

)

s.t.
∑

k∈{g}
S

Kg

A
t(k)
t(g)x

k = bg ∀g ∈ Ca

xk = xkz ∀k ∈ Ka

xg ∈ X ∀g ∈ Ca

λg ≥ µgz′ + πgz′xg ∀z′ ∈ Ze′g, g ∈ Ca, e
′ ∈ E|e < e′,

(3.1)

where xkz is the value of xk in a given reference level z, and the following variable and
coefficients are to be obtained according to the scheme presented in section 4:

λg, variable that takes the value of the EFV curve for the variables’ vector xg.

µgz, constant term for the segment related to reference level z, for z ∈ Zeg.

πgz, row vector that gives the marginal EFV, due to the linking variables vector xg,
for reference level z.

So, the aim consists of solving a set of multi-period stochastic subproblems
{
Paz :

z ∈ Ze−1,k, k ∈ Ka, a ∈ Ae
}

for each stage e = |E|, . . . , 2. The uncertainty of the
parameters is represented by the scenario groups associated with the nodes in the
subtree whose root node is node a. By using the appropriate back-to-front scheme, see
below, the EFV curves are obtained for the scenario groups from stage e = 1. Notice
that the subproblems Paz for a given a ∈ Ae share the same parameters, being the
fixing xk = xkz, z ∈ Ze−1,k the only difference in their respective models.

Figure 2 shows a case for |E| = 3 stages, where no EFV curves are for the nodes
from stage e = 3 (i.e., G3 = {73, . . . , 96, 97, . . . , 120, 121, . . . , 144}). Notice that the
optimization of the multi-period mixed 0–1 subproblems associated with the node
sets C19, . . . , C25 = {25, 49, 50, 97, . . . , 100} , . . . , C30, . . . , C36 (i.e., stage e=3) can be
performed for a set of the reference levels of the variables associated with the nodes
from G1

⋃
G2 = {1, . . . , 18}. As a result, a set of EFV curves is obtained for the nodes

1 to 18. Notice that the optimization of the multi-period mixed 0–1 subproblems
associated with the following subtrees C7 = {7, 10, 11, 12}, C8, C9 (i.e., stage e=2) can
be performed for a set of the reference levels of the variables associated with the nodes
1 to 6. As a result, a set of EFV curves is obtained for the nodes from G1, see Figure
3.

4 On computing the EFV curves

The proposed scheme for computing the EFV curve λ(xk) for scenario group k for
k ∈ Ka, a ∈ Ae, e = E , . . . , 2 requires us to optimize the set of stochastic subproblems{
Paz : z ∈ Ze−1,k

}
. The expression of the optimal value of the objective function related
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8

9
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12

13

14

15

16

17
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25

26

49

50

51

52

97

98

99

100

101

102

103

104

27

28

53

54

55

56

105

106

107

108

109

110

111

112

29

30

57

58

59

60

113

114

115

116

117

118

119

120

...

...

144

73

e = 1 e = 2 e = 3

t = 1 2 3 4 5 6 7 8 9 10 11

A3 = {19, . . . , 25, . . . , 30, . . . , 36}; G8 = {10, . . . , 18}
C27 = {27, 53, 54, 105, . . . , 108}; A8 = {25, . . . , 30}

Figure 2: Multi-period scenario tree, 3 stages
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t =1 2 3 4 5 6
e = 1

1 2 3 4 5 6 T = {1, 2, 3, 4, 5, 6}

G1 = {1, 2, 3, 4, 5, 6}

t(3) = 3

Figure 3: Multi-period scenario tree, stage e = 1

to a small perturbation of the value of the linking variables in the given reference level
gives information for computing the curve.

In effect, the curve λ(xk) can be obtained by the linearization (4.1) of the objective
function of subproblem (3.1) around the given value xkz of the linking variables, for
z ∈ Ze−1,k such that k ∈ Ka.

σaz(xk) ≈ σ̂az +
∂σaz

∂xk
(x̄kz)T (xk − xkz), (4.1)

where σ̂az is the optimal value of the objective function (3.1), and the vector ∂σaz

∂xk (xkz)
is the gradient of the objective function of subproblem Paz with respect to the value
of the vector xk of the linking variables related to reference level z. Let

∂σaz

∂xk

T

(x̄kz) ≡ πkaz, (4.2)

where πkaz =
{
πkaz

j

}
and πkaz

j is the scalar that gives the estimation of the objective
function increase (that can be negative) due to an increment of the j-th component of
the rhs of the constraints xk = xkz in subproblem (3.1).

From where the linear approximation of the function (4.1) can be expressed

σaz(xk) ≈ µkaz + πkazxk, (4.3)

where µkaz is the constant term

µkaz = σ̂az − πkazxkz. (4.4)

The µ− and π− expected values over the scenario groups will be

µkz =
∑

a∈Ak

waµkaz, (4.5)

πkz =
∑

a∈Ak

waπkaz. (4.6)

Notice that wa is the weight assigned to the subtree rooted by node a from set Ak.
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For each reference level z ∈ Ze−1,k it results that λkz, the estimation of λk, can be
expressed

λkz = µkz + πkzxk, (4.7)

from where it results

λk = max{µkz + πkzxk ∀z ∈ Ze−1,k}, ∀k ∈ Ka, (4.8)

provided that it is a convex function. Otherwise, an adjustment is required to preserve
this property.

Finally, the subproblem (3.1) has the following expression for e = 1,

min
∑

g∈G1

(
cgxg + λg

)

s.t.
∑

k∈{g}
S

Kg

A
t(k)
t(g)x

k = bg ∀g ∈ G1

xg ∈ X ∀g ∈ G1

λg ≥ µgz + πgzxg ∀z ∈ Ze′g, g ∈ G1, e′ ∈ E : e′ > 1.

(4.9)

Stopping criteria
For obtaining the solution offered by the approach a front-to-back step is performed

at each iteration of the algorithm, by considering the EFV curve for each step. The
procedure is stopped when a given number of iterations is performed or the solution
value of two consecutive iterations is close enough.

5 Production planning under uncertainty

5.1 Problem statement

The problem consists of deciding how much production and, where such is the case,
how much product demand loss can be expected at each period along a time hori-
zon. The production capacity constraints, the product stock limitations, some logistic
constraints related to the production lot sizing and the product demand requirements
should be satisfied at a minimum cost. There is a vast amount of literature on the
deterministic version of the problem. See the seminal paper of [25] for considering only
continuous variables. See [4, 9, 17, 20, 23, 22, 27], among others, for considering lot
sizing limitations and other logical constraints (and, then, considering 0–1 variables).

However, very frequently the production decisions must be made in the presence
of uncertainty in several important parameters, such as production cost, product de-
mand and resource availability along a multistage time horizon. We present below
two equivalent models for production planning, where the uncertainty is treated via a
scenario tree based scheme, such that the occurrence of the events is represented by a
multistage scenario tree.
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5.2 Complete recourse deaggregate mixed 0–1 DEM

The following is the notation for the sets and parameters used in the tactical production
planning model.
Sets:

J , set of products.

R, set of resources.

Deterministic parameters:

N̂ , maximum number of products to be produced in a single time period.

Xjt, Xj, conditional minimum and maximum volume of product j that can be pro-
duced at time period t, respectively, if any, for j ∈ J , t ∈ T .

Sj, maximum volume of product j that can be in stock at any time period, for j ∈ J .

orj, unit capacity consumption of resource r by product j, for r ∈ R, j ∈ J .

hj, unit holding cost of product j at any time period, for j ∈ J .

pj, unit lost demand penalty for product j, for j ∈ J .

fj, fixed cost to be incurred for producing product j at any time period, for j ∈ J .

Uncertain parameters under scenario group g, for g ∈ G:

Og
r , available capacity of resource r at time period t(g), for r ∈ R.

Dg
j , demand of product j, for j ∈ J .

cg
j , unit processing cost of product j, for j ∈ J .

Variables under scenario group g, for g ∈ G:

δg
j , 0–1 variable such that its value is 1 if product j is produced, and 0 otherwise, for

j ∈ J .

xgg′

j , production volume of product j at time period t(g) to satisfy the demand from
time period t(g′) under scenario group g′, for j ∈ J , g′ ∈ Sg. Notice that the

production volume xgg′

j will be in stock during the periods t(g), t(g)+1, . . . , t(g′)−
1.

yg
j , lost demand of product j from time period t(g) under scenario group g, for j ∈ J ,

g ∈ G .

The following is a compact representation of the DEM for the multistage stochastic
problem with complete recourse.
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Objective

Determine the production and stock management policy to minimize the expected
production and stock cost and the lost demand penalty plus the production fixed cost
over the scenarios along the time horizon, subject to the constraints (5.2)- (5.10).

min
∑

g∈G

∑

j∈J

[ ∑

g′∈Sg

wg′
(
cg
j + hj(t(g

′) − t(g))
)
xgg′

j + wg(pjy
g
j + fjδ

g
j )

]
(5.1)

Constraints

∑

j∈J

orj

∑

g′∈Pk
g ∪{g}

xgg′

j ≤ Og
r ∀r ∈ R, k ∈ Ωg, g ∈ G (5.2)

Xj,t(g)δ
g
j ≤

∑

g′∈Pk
g ∪{g}

xgg′

j ≤ Xjδ
g
j ∀j ∈ J , k ∈ Ωg, g ∈ G (5.3)

∑

j∈J

δg
j ≤ N̂ ∀g ∈ G (5.4)

∑

ℓ∈Kg∪{g}

xℓg
j + yg

j = Dg
j ∀j ∈ J , g ∈ G (5.5)

∑

ℓ∈Kg∪{g}

∑

g′∈Pk
g

xℓg′

j ≤ Sj ∀j ∈ J , k ∈ Ωg, g ∈ G (5.6)

∑

g′∈Pk
g

xgg′

j =
∑

g′∈Pk+1
g

xgg′

j ∀j ∈ J , k ∈ Ωg, g ∈ G (5.7)

xgg′

j ≥ 0 ∀j ∈ J , g′ ∈ Sg, g ∈ G (5.8)

yg
j ≥ 0 ∀j ∈ J , g ∈ G (5.9)

δg
j ∈ {0, 1} ∀j ∈ J , g ∈ G. (5.10)

The knapsack constraints (5.2) ensure that the consumption of the resources does
not exceed the availability. Constraints (5.3) define the semi-continuous character of
the production volume. The cover induced constraints (5.4) do not allow to produce
more products in a single time period than the maximum allowed. Constraints (5.5)
define the demand balance equations, such that the demand deficit is lost. Constraints
(5.6) give the upper bounds of the product stock. Constraints (5.7) force the same
value for the production volume for a given scenario group and, so, independently of
the scenario to occur, thus satisfying the non-anticipativity principle.

The instances of the mixed 0–1 DEM (5.1)-(5.10) can have such large dimensions
that the using of state-of the-art optimization engines can make it unaffordable. Ben-
ders, Lagrangian and Branch-and-Fix Coordination decomposition schemes can be
used, although the instances dimensions should be medium-sized.
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5.3 Complete recourse aggregate mixed 0–1 DEM [3]

Variables:

xg
j =

∑
g′∈Pk

g ∪{g}
xgg′

j , production volume of product j under scenario group g, for any

scenario k in group g.

sg
j =

∑
ℓ∈Kg∪{g}

∑
g′∈Pk

g
xℓg′

j , stock volume of product j under scenario group g for any

scenario k in group g.

The aggregate model is as follows,

min
∑

g∈G

wg
∑

j∈J

[
cg
jx

g
j + hjs

g
j + pjy

g
j + fjδ

g
j

]
(5.11)

subject to

∑

j∈J

orjx
g
j ≤ Og

r ∀r ∈ R, g ∈ G (5.12)

Xj,t(g)δ
g
j ≤ xg

j ≤ Xjδ
g
j ∀j ∈ J , g ∈ G (5.13)

∑

j∈J

δg
j ≤ N̂ ∀g ∈ G (5.14)

s
ρ(g)
j + xg

j = Dg
j + sg

j − yg
j ∀j ∈ J , g ∈ G (5.15)

0 ≤ sg
j ≤ Sj ∀j ∈ J , g ∈ G (5.16)

yg
j ≥ 0 ∀j ∈ J , g ∈ G (5.17)

δg
j ∈ {0, 1} ∀j ∈ J , g ∈ G (5.18)

It is well known that the deterministic version of model (5.1)-(5.10) is tighter than
the deterministic version of model (5.11)-(5.18), see [27]. Althogh the results are not
shown here, its stochastic version does need more elapsed time and memory than the
latter model.

6 Computational experience

We report the computational experience obtained when solving the multistage stochas-
tic mixed 0–1 model for a set of three instance testbeds of the tactical production
planning problem. They have been randomly generated. (They are available from the
authors on request). The 1st testbed is included by 24 small-scale instances, the 2nd
testbed is included by 24 medium-scale instances, and the 3rd testbed is included by
the remaining 16 instances, which are very large-scale.

Our algorithm has been implemented in an experimental C code. It uses the op-
timization engine CPLEX v9.1 for solving the MIP subproblems for each stage. The
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computational experiments were conducted on a SUN WS W2100z with a 2.2Ghz op-
taron processor, 4Gb of RAM and the operating system Linux Enterprise 3.

The stopping criterion that we have used for the SDP approach is that the solution
does not change in two consecutive back-to-front iterations.

The tables 1, 5 and 8 give the problem dimensions, the number of scenario groups
and the number of scenarios. The tables 2, 6 and 9 give the dimensions of the DEM,
compact representation, where the headings are: m, number of constraints; n01, num-
ber of 0-1 variables; nc, number of continuous variables; nel, number of nonzero ele-
ments in the constraint matrix; and dens, constraint matrix density (in %). Note that
the dimensions of the cases are very high, even the instances of the 1st testbed. We
notice in Table 2 that the so-called ”small” instances have 50000+ constraints, 14400+
0–1 variables and 36000 continuous variables in the big cases. The tables 3, 7 and 10
show the main results of our computational experimentation for solving the original
problem. The headings are as follows: ZLP , solution value of the LP relaxation of the
original problem; ZIP , value of the incumbent solution for the original problem that
has been obtained by either using the plain CPLEX or our SDP proposal; nn, number
of explored BB nodes; TIP , elapsed time (secs.) for obtaining the solution; niter, num-
ber of the back-to-front SDP iterations; Nz, number of reference levels that has been
used at each stage; nprob, number of MIP subproblems to solve along the stages; GG,
goodness gap computed as (ZSDP−CPLEX

IP − ZCPLEX
IP )/ZSDP−CPLEX

IP %. Time limit: 8
hours.

We can observe in Table 3 that the solution values of CPLEX and our SDP approach
are very similar for the 1st testbed, but the total time required by SDP is two, three and
four orders of magnitude smaller (depending on the instances) than the time required
by CPLEX. Note that the SDP time goes from 1 second to 1 minute. Three stages
are considered for the SDP runs. As an example, for the instances with tree structure
163223, the first stage has 6 periods with one node each, the second stage has the
structure 32 (there are 2 periods with 3 successors per ancestor node) and the third
stage has the structure 23 (there are 3 periods with 2 successors per ancestor node),
in total 11 time periods, 144 nodes (i.e., scenario groups) and 72 scenarios, see Figure
2. The dimensions of the MIP subproblems are given in Table 4, the headings are as
in Table 2. The SDP approach cannot win CPLEX (GG is positive) but the solution
values are comparable.

Table 6 shows the dimensions of the ”medium” scale instances, some of which have
325000+ constraints, 85500 0–1 variables and 200000+ continuous variables. Table
7 shows the computational comparison. Again CPLEX gives better solution values,
although GG has been reduced and the time differences are similar to the time differ-
ences for the 1st testbed. For instance, SDP requires 5 minutes in case c48 to provide
a solution whose GG is 0.8%, while CPLEX has reached the time limit (8 hours) of
computing. We can observe that the number of scenarios and scenario groups have
grown from |Ω| = 72 and |G| = 144 to 432 and 855, respectively. The dimensions of
the MIP subproblems are given in Table 4.

Table 8 shows the dimensions of the 3rd testbed. Notice that we have up to |Ω| =
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7776 scenarios, |G| = 11684 scenario groups and a big number of MIP subproblems
to solve, see Table 4. This testbed has two characteristics: 5 stages are considered
with 14 and 16 time periods, and the dimensions of the instances c61 to c64 are
one order of magnitude bigger than the dimensions of the instances in the 1st and
2nd testbeds, resulting in one million+ 0–1 variables, almost three million continuous
variables and four million+ constraints, see Table 9. Given the large dimensions of
these last instances, CPLEX cannot provide a solution for the original problem within
the time limit, it cannot even solve the LP relaxation. However, the SDP approach
produces a solution for all instances in very small elapsed time (less than 90 minutes)
given the model dimensions, see Table 10.

Table 1: Problem dimensions and number of scenarios. 1st testbed

Case scenario tree |J | |R| |T | |G| |Ω|

c1 162332 10 2 11 116 72
c2 162332 10 4 11 116 72
c3 163223 10 2 11 144 72
c4 162332 20 4 11 116 72
c5 162332 20 10 11 116 72
c6 163223 20 4 11 144 72
c7 163223 20 10 11 144 72
c8 162332 30 10 11 116 72
c9 163223 30 10 11 144 72
c10 162332 40 10 11 116 72
c11 162332 40 15 11 116 72
c12 162332 50 10 11 116 72
c13 162332 50 15 11 116 72
c14 163223 40 10 11 144 72
c15 162332 50 20 11 116 72
c16 163223 40 15 11 144 72
c17 163223 50 10 11 144 72
c18 163223 50 15 11 144 72
c19 163223 50 20 11 144 72
c20 162332 100 20 11 116 72
c21 162332 100 30 11 116 72
c22 163223 100 20 11 144 72
c23 163223 100 30 11 144 72
c24 163223 100 40 11 144 72

7 Conclusions and future work

A Stochastic Dynamic Programming approach has been presented in the paper. The
uncertainty is represented by a multistage scenario tree. Linking variables between con-
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Table 2: DEM dimensions. Compact Representation. 1st testbed

Complete DEM Scenario Model

case scenario tree m n01 nc nel dens m n01 nc nel dens

c1 162332 4268 1160 2760 11890 0.071 463 110 320 1200 0.602
c2 162332 4500 1160 2760 13978 0.079 485 110 320 1420 0.680
c3 163223 5472 1440 3600 15110 0.054 463 110 320 1200 0.602
c4 162332 8420 2320 5520 27492 0.041 915 220 640 2840 0.360
c5 162332 9116 2320 5520 39440 0.055 981 220 640 4160 0.493
c6 163223 10800 2880 7200 35980 0.033 915 220 640 2840 0.360
c7 163223 11664 2880 7200 48652 0.041 981 220 640 4160 0.493
c8 162332 13036 3480 8280 59566 0.038 1411 330 960 6240 0.342
c9 163223 16704 4320 10800 74418 0.029 1411 330 960 6240 0.342
c10 162332 16956 4640 11040 77604 0.029 1841 440 1280 8320 0.262
c11 162332 17536 4640 11040 96396 0.035 1896 440 1280 10520 0.322
c12 162332 20876 5800 13800 97962 0.023 2271 550 1600 10400 0.212
c13 162332 21456 5800 13800 119538 0.028 2326 550 1600 13150 0.262
c14 163223 21744 5760 14400 97880 0.022 1841 440 1280 8320 0.262
c15 162332 22036 5800 13800 145754 0.033 2381 550 1600 15900 0.310
c16 163223 22464 5760 14400 119768 0.026 1896 440 1280 10520 0.322
c17 163223 26784 7200 18000 123790 0.018 2271 550 1600 10400 0.212
c18 163223 27504 7200 18000 151582 0.021 2326 550 1600 13150 0.262
c19 163223 28224 7200 18000 179806 0.025 2381 550 1600 15900 0.310
c20 162332 41636 11600 27600 283504 0.017 4531 1100 3200 31800 0.163
c21 162332 42796 11600 27600 378972 0.022 4641 1100 3200 42800 0.214
c22 163223 53424 14400 36000 361340 0.013 4531 1100 3200 31800 0.163
c23 163223 54864 14400 36000 478988 0.017 4641 1100 3200 42800 0.214
c24 163223 56304 14400 36000 593180 0.020 4751 1100 3200 53800 0.263

secutive and non-consecutive time periods are allowed. The proposed scheme utilizes
the scenario tree in a back-to-front way. A gradient based perturbation of the objective
function around a set of reference levels gives the estimation of the coefficients of the
EFV curves for the expected impact of the variables in the objective function of the
original problem. For assessing its validity a production planning problem with logical
constraints is considered as a pilot case in both versions, namely, aggregate and deag-
gregate models. A (small) stochastic multistage mixed 0–1 problem is solved for each
reference level from a given set and each starting subtree associated with the stages
in the scenario tree. The first conclusion that can be drawn from the computational
experience with the pilot problem is that the results (not shown in the paper) for the
deaggregate model are not good given the high dimensions that are required. It is well
known that this has a better performance than the aggregate model in the determin-
istic setting, but it is of no use in the stochastic setting. However, the modelization
technique that we have used is new as far we know and the approach can be useful
for other problems. Additionally, the computational results for the aggregate model
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are comparable with the results obtained by plain use of CPLEX, a state-of-the-art
optimization engine, for ”small” and ”medium”-scale instances, but it gives results
for large-scale instances (over one million 0–1 variables for 7000+ scenarios, 11000+
scenario groups, 5 stages and 16 time periods) where CPLEX cannot find any solution
(even for the LP relaxation) within the time limit (8 hours). In any case, the proposed
SDP approach needs very little computing time (less than 90 minutes for the biggest
instances).

As a future work we are planning to study the effect of the cardinality of the sets of
reference levels in the objective function of the original problem. Another task which
still remains is the parallelization of the optimization of the models attached to the
subtrees with the roots as the starting scenario groups at each stage of the scenario
tree and each reference level. We anticipate that the elapsed time could be drastically
reduced.
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Table 3: Solution values. 1st testbed
Plain CPLEX SDP − CPLEX

case scenario tree ZLP tLP ZIP tIP nn ZIP tIP niter Nz nprob GG%

c1 162332 15813 0.01 830310 0.04 25 832741 0.32 2 9 714 0.2
c2 162332 15076 0.02 358322 0.16 76 361996 0.56 2 9 714 1.0
c3 163223 13956 0.02 916801 0.06 2 920134 0.59 2 9 812 0.3
c4 162332 34611 0.05 1293765 0.15 39 1331129 2.71 4 17 2142 2.8
c5 162332 29393 0.05 1455129 0.11 45 1490031 0.9 2 9 714 2.3
c6 163223 33705 0.04 1106305 61.12 43611 1127835 1.4 2 9 812 1.9
c7 163223 26116 0.06 946191 2.05 807 956362 1.62 2 9 812 1.0
c8 162332 42631 0.07 1557732 0.68 256 1588201 1.72 2 9 714 1.9
c9 163223 46125 0.09 1238900 10.98 4173 1246994 2.34 2 9 812 0.6
c10 162332 60061 0.07 2515217 1.34 608 2576060 2.06 2 9 714 2.3
c11 162332 63256 0.10 2161413 2.06 820 2182869 6.72 4 17 2142 0.9
c12 162332 78626 0.12 2930478 2.18 823 2951628 4.88 3 13 1326 0.7
c13 162332 79199 0.14 2977623 9.83 4449 3000054 10.51 4 17 2142 0.7
c14 163223 56885 0.12 2268162 5.03 1276 2281700 2.69 2 9 812 0.6
c15 162332 74120 0.16 2649567 4.99 1570 2675629 3.46 2 9 714 0.9
c16 163223 60444 0.13 2641603 0.85 97 2665565 8.61 4 17 2436 0.9
c17 163223 69941 0.17 2176069 19861.96 3757360 2214307 3.81 2 9 812 1.7
c18 163223 72559 0.18 3076014 737.77 204979 3100176 3.65 2 9 812 0.7
c19 163223 70055 0.19 2765041 1 28800.01 6627785 2817617 27.1 6 25 4988 1.8
c20 162332 163727 0.31 6689224 6.51 1007 6736526 6.48 2 9 714 0.7
c21 162332 156125 0.33 4488014 244.71 57044 4597174 26.96 4 17 2142 2.3
c22 163223 160219 0.44 5982664 10377.22 1304416 6033771 29.37 4 17 2436 0.8
c23 163223 162530 0.47 5635912 1 28800.03 4412541 5684449 71.79 6 25 4988 0.8
c24 163223 158855 0.54 5227253 1 28800.01 4248981 5279983 59.37 5 21 3596 0.9
1 Time limit exceed maximum 8 hours.
2 Stop. Out of memory.
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Table 4: MIP subproblems. Dimensions
smallest subproblem greatest subproblem

bed m n01 nc m n01 nc

testbed 1 62 40 100 1287 700 1800
testbed 2 258 60 180 5765 1500 3800
testbed 3 139 30 100 4803 1300 3100

Note: The smallest and largest models are given by
the smallest and greatest number of 0-1 variables.

Table 5: Problem dimensions and number of scenarios. 2nd testbed

Case scenario tree |J | |R| |T | |G| |Ω|

c25 162433 10 2 13 660 432
c26 162433 10 4 13 660 432
c27 163324 10 2 13 855 432
c28 163324 10 4 13 855 432
c29 162433 20 4 13 660 432
c30 162433 20 10 13 660 432
c31 163324 20 4 13 855 432
c32 163324 20 10 13 855 432
c33 162433 30 10 13 660 432
c34 162433 40 10 13 660 432
c35 162433 40 15 13 660 432
c36 163324 30 10 13 855 432
c37 162433 50 10 13 660 432
c38 162433 50 15 13 660 432
c39 162433 50 20 13 660 432
c40 163324 40 10 13 855 432
c41 163324 40 15 13 855 432
c42 163324 50 10 13 855 432
c43 163324 50 15 13 855 432
c44 163324 50 20 13 855 432
c45 162433 100 20 13 660 432
c46 162433 100 30 13 660 432
c47 163324 100 20 13 855 432
c48 163324 100 30 13 855 432
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Table 6: DEM dimensions. Compact Representation. 2nd testbed

Complete DEM Scenario Model

case scenario tree m n01 nc nel dens m n01 nc nel dens

c25 162433 24060 6600 15480 66590 0.013 549 130 380 1420 0.507
c26 162433 25380 6600 15480 77810 0.014 575 130 380 1680 0.573
c27 163324 32445 8550 21330 90530 0.009 549 130 380 1420 0.507
c28 163324 34155 8550 21330 104210 0.010 575 130 380 1680 0.573
c29 162433 47460 13200 30960 159580 0.008 1085 260 760 3360 0.304
c30 162433 51420 13200 30960 226240 0.010 1163 260 760 4920 0.415
c31 163324 64035 17100 42660 209275 0.005 1085 260 760 3360 0.304
c32 163324 69165 17100 42660 299050 0.007 1163 260 760 4920 0.415
c33 162433 73500 19800 46440 333750 0.007 1673 390 1140 7380 0.288
c34 162433 95580 26400 61920 447860 0.005 2183 520 1520 9840 0.221
c35 162433 98880 26400 61920 552800 0.006 2248 520 1520 12440 0.271
c36 163324 99045 25650 63990 430620 0.005 1673 390 1140 7380 0.288
c37 162433 117660 33000 77400 555370 0.004 2693 650 1900 12300 0.179
c38 162433 120960 33000 77400 684730 0.005 2758 650 1900 15550 0.221
c39 162433 124260 33000 77400 836530 0.006 2823 650 1900 18800 0.261
c40 163324 128925 34200 85320 593825 0.004 2183 520 1520 9840 0.221
c41 163324 133200 34200 85320 717800 0.005 2248 520 1520 12440 0.271
c42 163324 158805 42750 106650 712570 0.003 2693 650 1900 12300 0.179
c43 163324 163080 42750 106650 892975 0.004 2758 650 1900 15550 0.221
c44 163324 167355 42750 106650 1072525 0.004 2823 650 1900 18800 0.261
c45 162433 234660 66000 154800 1635440 0.003 5373 1300 3800 37600 0.137
c46 162433 241260 66000 154800 2142320 0.004 5503 1300 3800 50600 0.180
c47 163324 316755 85500 213300 2134790 0.002 5373 1300 3800 37600 0.137
c48 163324 325305 85500 213300 2798270 0.003 5503 1300 3800 50600 0.180
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Table 7: Solution values. 2nd testbed
Plain CPLEX SDP − CPLEX

case scenario tree ZLP tLP ZIP tIP nn ZIP tIP niter Nz nprob GG%

c25 162433 15798 0.09 1075621 0.23 20 1085157 1.98 2 9 714 0.9
c26 162433 15696 0.12 1146946 0.14 5 1149136 3.81 3 13 1377 0.2
c27 163324 17321 0.18 717161 1 28800.03 4772630 728435 4.70 2 9 812 1.5
c28 163324 15627 0.15 927135 1.56 153 932886 3.40 2 9 812 0.6
c29 162433 35511 0.24 1683262 0.64 18 1708830 4.60 2 9 714 1.5
c30 162433 26434 0.30 1745853 1.11 90 1752770 5.75 2 9 714 0.4
c31 163324 39534 0.37 1907302 985.94 184289 1921383 8.63 2 9 812 0.7
c32 163324 36108 0.40 1092750 1 28800.02 3276916 1106512 61.85 5 21 3770 1.2
c33 162433 45889 0.49 1669375 429.84 70739 1686014 18.72 3 13 1377 1.0
c34 162433 64747 0.62 2298606 1989.33 244222 2367019 43.37 4 17 2244 2.9
c35 162433 58802 0.69 2331871 1 28800.02 3564053 2354928 15.29 2 9 714 1.0
c36 163324 50731 0.67 1721782 1 28800.02 3059853 1739389 18.29 2 9 812 1.0
c37 162433 85195 0.80 3577998 1 28800.01 3845492 3614010 131.9 6 25 4590 1.0
c38 162433 84556 0.93 3277473 1 28800.04 3604127 3295960 19.88 2 9 714 0.6
c39 162433 83147 1.00 3612532 1 28800.02 3770371 3641829 200.95 7 29 6069 0.8
c40 163324 62266 0.92 3264867 1 28800.02 2967111 3289642 20.68 2 9 812 0.8
c41 163324 73444 0.97 3387406 1 28800.02 2799542 3407129 45.86 3 13 1566 0.6
c42 163324 92696 1.12 4329560 1 28800.01 2424996 4362136 22.35 2 9 812 0.7
c43 163324 93258 1.35 3510296 1 28800.02 1989219 3539830 70.07 3 13 1566 0.8
c44 163324 87761 1.44 4214406 1 28800.01 2442284 4259200 148.27 5 21 3770 1.1
c45 162433 196912 2.20 8037153 1 28800.02 2347277 8125403 39.75 2 9 714 1.1
c46 162433 187742 2.57 8089552 1 28800.01 2329950 8143174 109.22 3 13 1377 0.7
c47 163324 192924 2.51 7160902 2 13435.00 470521 7225673 245.84 4 17 2552 0.9
c48 163324 176461 3.22 6607400 2 13855.33 439349 6663366 302.48 4 17 2552 0.8
1 Time limit (8 hours) exceeded.
2 Stop. Out of memory.
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Table 8: Problem dimensions and number of scenarios. 3rd testbed

Case scenario tree |J | |R| |T | |G| |Ω|

c49 1622223232 10 2 14 1956 1296
c50 1622223232 10 4 14 1956 1296
c51 1632322222 10 2 14 2556 1296
c52 1632322222 10 4 14 2556 1296
c53 1632322323 10 2 16 10332 5184
c54 1632322323 10 4 16 10332 5184
c55 1622233233 10 4 16 11684 7776
c56 1622233233 10 2 16 11684 7776
c57 1622223232 100 20 14 1956 1296
c58 1622223232 100 40 14 1956 1296
c59 1632322222 100 20 14 2556 1296
c60 1632322222 100 40 14 2556 1296
c61 1632322323 100 20 16 10332 5184
c62 1632322323 100 30 16 10332 5184
c63 1622233233 100 20 16 11684 7776
c64 1622233233 100 30 16 11684 7776

Table 9: DEM dimensions. Compact Representation. 3rd testbed

Complete DEM Scenario Model

case scenario tree m n01 nc nel dens m n01 nc nel dens

c49 1622223232 71148 19560 45720 200966 0.004 592 140 410 1530 0.46
c50 1622223232 75060 19560 45720 226394 0.004 620 140 410 1810 0.53
c51 1632322222 96948 25560 63720 262898 0.003 592 140 410 1530 0.46
c52 1632322222 102060 25560 63720 311462 0.003 620 140 410 1810 0.53
c53 1632322323 392436 103320 258120 1115486 0.0007 678 160 470 1750 0.40
c54 1632322323 413100 103320 258120 1239470 0.0008 710 160 470 2070 0.46
c55 1622233233 448020 116840 272760 1340022 0.0007 710 160 470 2070 0.46
c56 1622233233 424652 116840 272760 1199814 0.0007 678 160 470 1750 0.40
c57 1622223232 693876 195600 457200 4775444 0.001 5794 1400 4100 40500 0.12
c58 1622223232 732996 195600 457200 7903088 0.001 6074 1400 4100 68500 0.20
c59 1632322222 946476 255600 637200 6411860 0.0007 5794 1400 4100 40500 0.12
c60 1632322222 997596 255600 637200 10555136 0.001 6074 1400 4100 68500 0.20
c61 1632322323 3831372 1033200 2581200 26001944 0.0001 6636 1600 4700 46300 0.11
c62 1632322323 3934692 1033200 2581200 34277876 0.0002 6796 1600 4700 62300 0.14
c63 1622233233 4141364 1168400 2727600 28507632 0.0001 6636 1600 4700 46300 0.11
c64 1622233233 4258204 1168400 2727600 38497452 0.0002 6796 1600 4700 62300 0.14

25



Table 10: Solution values. 3rd testbed
Plain CPLEX SDP − CPLEX

case scenario tree ZLP tLP ZIP tIP nn ZIP tIP niter Nz nprob GG%

c49 1622223232 14094 0.39 993334 0.40 0 1023824 6.28 2 9 6874 2.9
c50 1622223232 16666 0.38 1005119 1.03 108 1011070 6.02 2 9 6874 0.5
c51 1632322222 18402 0.54 772576 1 28800.01 2966033 794133 13.25 2 9 11774 2.7
c52 1632322222 20511 0.65 863055 1 28800.16 3442001 877109 212.02 10 41 195112 1.6
c53 1632322323 21403 2.43 772083 2 22634.76 433302 706475 53.22 3 13 38012 -9.2
c54 1632322323 19224 2.43 673221 2 20046.46 465114 706475 49.87 2 9 20468 4.7
c55 1622233233 23775 2.52 1126347 1 28800.02 2016119 1132367 39.15 2 9 13594 0.5
c56 1622233233 21940 2.48 1164688 2 26413.66 914895 1132367 22.82 2 9 13594 -2.8
c57 1622223232 190641 7.08 7181492 2 23378.18 446069 7426324 3952.24 15 61 242063 3.2
c58 1622223232 179749 9.29 8758639 2 20696.63 557818 8970959 1148.81 7 29 55974 2.3
c59 1632322222 183144 10.33 8221657 2 5730.48 62720 8448332 920.29 6 25 72326 2.6
c60 1632322222 186600 13.98 8605080 2 4159.14 49162 8806620 547.56 4 17 35322 2.2
c61 1632322323 - - - - - 9664379 600.03 2 9 20468 -
c62 1632322323 - - - - - 8910226 3 3599.53 5 21 90644 -
c63 1622233233 - - - - - 8192060 1815.10 4 17 40782 -
c64 1622233233 - - - - - 7696755 3 4477.67 5 21 60202 -
1 Time limit (8 hours) exceeded.
2 Stop. Out of memory.
3 Forced to 5 back-to-front iterations.
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