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Abstract—In this paper we address some basic ques-
tions about chaotic cryptography, not least the very defini-
tion of chaos in discrete systems. We propose a conceptual
framework and illustrate it with different examples from
private and public key cryptography. We elaborate also on
possible limits of chaotic cryptography.

1. Introduction

Chaos-based cryptography (sometimes called ‘chaotic’
cryptography) has been around for more than a decade by
now. During this time of foundation and development, it
came to mean different things, mostly depending on the
implementation. So, we can speak of additive masking [1],
chaos shift keying [2], two-channel communication [3],
message embedding [4], etc. At the beginning, the mes-
sage carriers were analogue signals, so that chaos theory
could be applied as such. Later, the signals became digital
and, hence, the application of chaos theory was not justi-
fied any more. Further concern came from the fact that,
in general, the proposers of chaotic ciphers did not take
due care about security or performance issues. As a re-
sult, most of these cryptosystems were shown to be weak
against one or the other type of attack (see, e.g., [5]), while
the safer ones were typically too slow to compete with con-
ventional ciphers. In the mean time, authors became more
cautious about cryptanalysis and implementation, which is
absolutely necessary if chaotic cryptography has to consol-
idate as a real alternative. In any case, chaotic cryptogra-
phy continues to be an active research field, as shown by
the large number of papers being published, and it is thriv-
ing in form of new and interesting proposals in all areas of
modern cryptology.

Roughly speaking, there are two approaches when us-
ing chaotic dynamics in cryptography. The first one uses
chaotic systems to generate pseudo-random sequences,
which are then used as keystreams to mask the plaintext
in a manifold of ways. In the second approach, the plain
text is used as initial state and the ciphertext follows from
the orbit being generated (see, e.g., [6]). The first ap-
proach corresponds to stream ciphers, while the second to
block ciphers, both in secret and public key cryptography.

See [7, 8, 9, 10, 11, 12] for new cryptographic techniques.
Beside these traditional applications, chaos-based schemes
are currently being proposed for more novel applications
too, like hashing, key-exchange protocols, authentication,
etc., although we will not deal with them here.

One major issue in digital chaotic cryptography is the
numerical implementation. Since computers can represent
real numbers up to certain precision only, the orbits com-
puted differ from the theoretical ones. More fundamentally,
any orbit in a finite-state phase space is necessarily periodic
or, put in other words, there is no chaos in finite-state sys-
tems (but see [13]). To circumvent this problem, the practi-
tioners of chaotic cryptography usually resort to high preci-
sion arithmetic libraries with which several hundreds of ex-
act decimal digits can be obtained. Notwithstanding, there
are two good reasons for not using floating-point arithmetic
in chaos-based cryptography. First, floating-point numbers
are not uniformly distributed over any given interval of the
real axis [14]. Furthermore, one may observe the exis-
tence of redundant number representations. Indeed, due
to the normalized calculations in floating-point arithmetic,
some floating-point numbers represent the same real signal
value. Second —the most important reason—, there are no
analytical tools for understanding the periodic structure of
the orbits in the floating-point implementation of chaotic
maps. Consequently, we recommend to formulate the dis-
crete chaotic dynamics on the integers, as we do below.

The scope of this paper is to formalize the concept of
chaotic cryptography at the light of those principles that
have stood the pass of time. Furthermore, it should be
explained, what ‘chaos’ means in discrete systems. We
propose a definition of discrete chaos and show that dis-
cretization and truncation of chaotic orbits cannot provide
the most chaotic permutations in the limit of ever finer dis-
cretizations, what unveils some basic (though asymptotic)
shortcoming of this technique. Independently of the ap-
proach to discrete chaos, the cryptographic primitives and
ciphers considered in the literature share definitively some
general properties that characterize them as chaotic. We
have tried to distilled them out of the great variety of such
proposals and hope that our present contribution will bring
some unifying ideas into the picture.



2. Chaotic cryptographic primitives

We have explained in the Introduction how chaotic cryp-
tography uses discrete approximations of chaotic maps,
rather than chaotic maps themselves. These approxima-
tions, in turn, can be directly translated into maps on the
integers —the kind of maps used by conventional cryp-
tography. We begin by formalizing the concept of discrete
approximation.

The minimal framework we need is that of measure the-
ory. We say that (X,A, µ) is a measure space if X is a
non-empty set, A is a sigma-algebra of subsets of X and
µ is a measure on (X,A). If µ(X) < ∞, (X,A, µ) is called
a finite-measure space. Typically, X will be a compact
topological or even metric space (think of a finite inter-
val of Rn or of an n-torus). In this cases, A can be cho-
sen to be the Borel sigma-algebra (generated by the open
sets) and µ the corresponding Lebesgue measure. By a
chaotic map on X we will understand a µ-invariant map
f : X → X (i.e., f −1A ∈ A and µ( f −1A) = µ(A) for
all A ∈ A) that is strong mixing with respect to µ (i.e.,
limn→∞ µ(A1 ∩ f −nA2) = µ(A1)µ(A2) for all A1, A2 ∈ A).
Finally, we say that P = {A1, ..., AN} ⊂ A is a partition of X
if ∪N

n=1An = X and Ai ∩A j = ∅ for all i , j. A norm of P is
any uniform measure of the size of its elements (e.g., max-
imal length, maximal diameter, etc.). In order to streamline
the notation, we will usually refer only to X, with the un-
derlyingA and µ being understood.

Definition 2.1 Let X be a finite-measure space and f : X →
X a map. Let X∆ = {A1, ..., AN(∆)} be a family of partitions
of X, labelled by a parameter ∆, say, the partition norm,
such that lim∆→0 X∆ = E, the partition of X into separate
points. Furthermore, given a family of maps f∆ : X∆ → X,
define the extensions f̄∆ : X → X as f̄∆(x) = f∆(An) if x ∈
An ∈ X∆. We say that (X∆, f∆) is a discrete approximation
of (X, f ) if, moreover, lim∆→0 f̄∆ = f in some relevant sense
(depending on the structure we put on X).

This definition of discrete approximation is an idealiza-
tion of what actually happens when computing real func-
tions with computers, as the following example shows.

Example 2.2 Let X = [0, 1], X∆ = {Ii : 0 ≤ i ≤ 10e − 1},
where Ii = [i10−e, (i + 1)10−e) for 0 ≤ i < 10e − 2, I10e−1 =

[1 − 10−e, 1] and ∆ = 10−e. Set

f∆(Ii) = f (i10−e),

where f : [0, 1]→ [0, 1] is a continuous function, and

f̄∆(x) =

10e−1∑

j=0

f ( j10−e)χI j (x)

(where χI j is the characteristic function of I j, i.e., χI j (x) = 1
if x ∈ I j and 0 otherwise), so that f̄∆(x) = f (i10−e)
iff i10−e ≤ x < (i + 1)10−e. Because of continuity,
| f (x) − f (y)| < ε if |x − y| < δ. Choose now ∆ ≤ δ and i =

bx10ec to conclude that
∣∣∣ f (x) − f̄∆(x)

∣∣∣ = | f (x) − f (i10−e)| <
ε. Hence, (X∆, f∆) is a discrete approximation of (X, f ).

Clearly, the intervals Ii of Example 2.2 consist of all real
numbers being internally represented by our ideal com-
puter as i10−e. Equivalently, we could have defined f∆
rather on a discrete set S ⊂ [0, 1] as, e.g., f∆(i10−e) =

b f (i10−e)10ec 10−e on {0, 10−e, ..., 1 − 10−e, 1}. We go from
one to the other formulation by taking S to comprise, say,
the left endpoints of X∆ (except for the rightmost interval,
where we take also the right endpoint) and restricting f∆
from X∆ to S or, in the other direction, by extending f∆
from S to X∆ constantly on each element of X∆. But the
formulation with partitions is technically more convenient
(especially in higher-dimensional intervals) since then f∆
extends straightforwardly to f̄∆ and, in fact, both can be
identified —as we will do wherever convenient.

The next example may result less familiar.

Example 2.3 [15] Suppose f is an automorphism of the
finite-measure space (X,A, µ), i.e., f is a one-to-one map
of X onto itself such that both f and f −1 are µ-invariant. We
consider sequences of finite partitions {Pn} of the space X,
Pn = {P(n)

k : 1 ≤ k ≤ N(n)}, such that limn→∞ Pn = E (the
partition of X into separate points) and sequences of au-
tomorphisms { fn} such that fn preserves Pn (i.e., fn sends
every element of Pn into an element of the same partition).
We say that an automorphism f of the space (X,A, µ) pos-
sesses an approximation by periodic transformations with
speed ϑ(n), if there exists a sequence of automorphisms fn
preserving Pn such that

N(n)∑

k=1

µ
(

f (P(n)
k ) M fn(P(n)

k )
)
< ϑ(qn), n = 1, 2, . . . .

where M stands for symmetric set difference and ϑ is a
function on the integers such that ϑ(n) → 0 monotoni-
cally. The sequence (Pn, fn) is a discrete approximation
of (X, f ) (with the conventional label ∆ → 0 replaced here
by n→ ∞).

Moreover, it is straightforward to translate discrete ap-
proximations ( f∆, X∆) into maps on, say, ZM = {0, 1, ..., M−
1}. In fact, if

f∆(Ai) = xi ∈ A j,

set first F∆(i) = j, where 1 ≤ i, j ≤ N(∆), to get a
map on the labels of X∆ = {A1, ..., AN(∆)}. Furthermore,
if xi = f∆(Ai) and x j = f∆(A j) belong to different parti-
tion elements for all i , j, the map F∆ will be a bijection
on {1, ...,N(∆)} or, equivalently, a permutation of N(∆) el-
ements. More generally, the orbits of F∆ will decompose
into eventually periodic and periodic cycles on subsets of
{1, ...,N(∆)}; call FM the restriction of F∆ to an invariant set
S M = {i1, ..., iM}, F∆(S M) = S M , and, without loss of gen-
erality, identify its invariant domain with ZM , M ≤ N(∆).

Throughout, we will also assume that the permutation
FM is irreducible, i.e., its domain ZM cannot be fur-
ther decomposed in invariant subsets under the action of



F∆. These irreducible pieces can be directly generated by
means of orbits. Indeed, let (X∆, f∆) be, as before, a discrete
approximation of (X, f ), and let (notation as in Definition
2.1) x j+1 = f̄∆(x j) ∈ An j+1 , j = 0, 1, ...,M − 2, be a length
M trajectory of x0 ∈ An0 under f̄∆ such that An j , Ank for
j , k, 0 ≤ j, k ≤ M−2, and AnM−1 = An0 ; set f̄∆(xnM−1 ) = xn0 .
The map f (or, equivalently, f̄∆) induces then the obvious
permutation

FM(ni) = n j if f̄∆(xni ) = xn j (1)

on {n0, ..., nM−1} and thus, after relabeling, also on ZM =

{0, 1, ...,M − 1}, M ≤ N(∆).
Intuitively, discrete approximation of chaotic maps are

expected to generate permutations with ‘nice’ mixing prop-
erties and, therefore, appropriate for cryptographic applica-
tions.

Definition 2.4 Discrete approximations of chaotic systems
(X, f ) in form of permutations (ZM , FM) are called chaotic
cryptographic primitives. Furthermore, we say that a cryp-
tographic algorithm is chaotic if some of its building blocks
is a chaotic cryptographic primitive.

In turn, the chaotic cryptographic primitives (ZM , FM)
can be eventually used to generate permutations on other
sets, notably the set {0, 1}n of n-bit blocks (with M = 2n).

3. Discrete chaos

Before illustrating in the following sections the concepts
of chaotic cryptographic primitives and algorithms with
examples, we would like to elaborate on chaotic crypto-
graphic primitives (ZM , FM) from the point of view of dis-
crete chaos [13].

Definition 3.1 Let S = {ξ0, ξ1, ..., ξM−1} be a linearly or-
dered set by means of the order ≺, endowed with a metric
d(·, ·), and let F : S → S be a bijection (or, equivalently, an
M-permutation). We define the discrete Lyapunov exponent
of f on (S ,≺, d), λF , as

λF =
1

M − 1

M−2∑

i=0

ln
d(F(ξi), F(ξi+1))

d(ξi, ξi+1)

As in the usual definition of Lyapunov exponent, we
have also taken natural logarithms. Without loss of gen-
erality, we may assume (S ,≺) = (ZM , <) setting, if nec-
essary, F(i) ≡ F(ξi) and d(i, j) ≡ d(ξi, ξ j). Observe that
λF depends both on the order < and on the metric d, but it
is invariant under rescaling and, furthermore, has the same
invariances as d.

Example 3.2 Suppose that M = 2m, d is Euclidean dis-
tance, and define

Fmax
M (ξ) =

{
m + k if ξ = 2k 0 ≤ k ≤ m − 1

k if ξ = 2k + 1 0 ≤ k ≤ m − 1

on ZM = {0, 1, ...,M − 1}. The discrete Lyapunov exponent
of Fmax

M is

λFmax
M

=
m

2m − 1
ln m +

m − 1
2m − 1

ln(m + 1).

Observe for further reference that limM→∞ λFmax
M

= ∞.

Theorem 3.3 [16] Let I be a one-dimensional interval
and f : I → I a chaotic map with respect to the mea-
sure µ, whose derivative is piecewise continuous. Then
limM→∞ λFM = λ f , where

λ f =

∫

I
ln

∣∣∣ f ′(x)
∣∣∣ dµ(x)

is the Lyapunov exponent of f .

The generalization of Theorem 3.3 to chaotic maps on
higher dimensional intervals requires the introduction of
the discrete Lyapunov exponent of order ν = 1, 2, ...; see
[13] for details.

Given a family of permutations (ZM , FM), how can be
decided whether they are chaotic cryptographic primitives,
i.e., whether there a chaotic map f exists such that FM is
generated by f in the way explained above? In virtue of
Theorem 3.3, a necessary condition is 0 < limM→∞ λFM <
∞. In particular, this excludes those families of permuta-
tions (like (ZM , Fmax

M )) such that limM→∞ λFM = ∞. On the
other hand, given a family of permutations (ZM , FM) gen-
erated by a chaotic map f on, say, [0, 1], it is impossible,
in general, to recover f since, on the way from f to FM ,
essential information on f gets lost. Only in cases similar
to Example 2.2, in which each FM has been gained via a
uniform partition X∆ = {Ii : 0 ≤ i ≤ N(∆) − 1}, M ≤ N(∆),
and the action of FM is known on {0, 1, ...,N(∆)−1} (rather
than on {0, 1, ...,M − 1}) for a sequence N(∆)→ ∞, we can
reverse the recipe (1),

f∆ (Ii) =
n j

M
if FM(i) = j,

and reconstruct ([0, 1], f ) by means of the discrete approx-
imations (X∆, f∆) in the usual way.

Definition 3.4 We say that the family of permutations
(ZM , FM) is discretely chaotic if 0 < limM→∞ λFM < ∞.

This definition can be generalized to non-bijective maps
on ordered sets; see [13] for details.

It can be proven [13] that λFM ≤ λFmax
M

for all permuta-
tions FM on ZM = {0, 1, ...,M−1} endowed with Euclidean
distance d(i, j) = |i − j|. Thus, we may claim that Fmax

M is
the ‘most discretely chaotic’ map on (ZM , <, |·|) in the sense
that its discrete Lyapunov exponent takes the largest possi-
ble value —but (ZM , Fmax

M ) is not a chaotic cryptographic
primitive because limM→∞ λFM = ∞. We come to the con-
clusion that discretization and truncation of chaotic orbits
cannot deliver the most discretely chaotic permutations —
at least on (ZM , <, |·|). This no-go result sets a kind of the-
oretical limit to the possibilities of chaotic cryptography.



4. Examples of chaotic primitives

In this section, we present some typical chaotic primi-
tives that, furthermore, are used in ciphers proposed in the
literature.

4.1. Finite-state tent map

For a positive integer M ≥ 2 and a ∈ R with 0 < a < M,
let fa : [0, M]→ [0, M] be the rescaled skew tent map

fa(x) =



x
a (0 ≤ x ≤ a)

M−x
M−a (a ≤ x ≤ M)

.

The map fa is one-dimensional, exact, and therefore mixing
and ergodic. Its Lyapunov exponent λ fa is given by

λ fa = − a
M

ln
a
M
− M − a

M
ln

M − a
M

.

For a hash function based on the (discretization) of the tent
map, see [17].

The finite-state tent map FA,M : {1, 2, . . . , M} →
{1, 2, . . . ,M} is the bijection defined as

FA,M(ξ) ≡


⌈
M
A ξ

⌉
(1 ≤ ξ ≤ A)

⌊
M

M−A (M − ξ)
⌋

+ 1 (A ≤ ξ ≤ M)
,

where A takes integer values in {1, 2, . . . , M}. The inverse
of FA,M is calculated as

F−1
A,M(η) ≡



ξ1 if θ(η) = η, ξ1
A > M−ξ2

M−A ,

ξ2 if θ(η) = η, ξ1
A ≤ M−ξ2

M−A ,

ξ1 if θ(η) = η + 1,

where
ξ1 ≡

⌊ A
M
η
⌋
, ξ2 ≡

⌈( A
M
− 1

)
η + M

⌉

and
θ(η) ≡ η +

⌊ A
M
η
⌋
−

⌈ A
M
η
⌉

+ 1.

The encryption and decryption functions are Fn
A,M(ξ) and

F−n
A,M(η), respectively, where n is the numbers of rounds.

4.2. Finite-state Chebyshev maps

The Chebyshev polynomial maps Tn : R → R of degree
n = 0, 1, ... are defined the recursion

Tn(x) = 2xTn−1(x) − Tn−2(x) for n ≥ 2,

and T0(x) = 1, T1(x) = x. The interval [−1, 1] is invari-
ant under the action of the map Tn: Tn([−1, 1]) = [−1, 1].
Alternatively, one can define

Tn(x) = cos(n arccos x), −1 ≤ x ≤ 1.

The Chebyshev polynomial Tn restricted to [−1, 1] is a
well-known chaotic map for all n ≥ 2: it has a unique ab-
solutely continuous invariant measure,

µ(x) =
1

π
√

1 − x2

and Lyapunov exponent ln n > 0 with respect to µ. For
n = 2, the Chebyshev map reduces to the logistic map.

It is straightforward to prove that Chebyshev polynomi-
als have the semi-group property:

Tr(Ts(x)) = Ts(Tr(x)) = Trs(x).

The finite-state Chebyshev map Fn,M : {0, 1, . . . , M −
1} → {0, 1, . . . , M − 1}, M ∈ N, is defined as

Fn,M(ξ) = Tn(ξ) (modM).

The semi-group property of the finite-state Chebyshev
maps can be used in key-exchange protocols or even in
public-key algorithms.

4.3. Finite-state n-dimensional torus automorphisms

An automorphism of the n-torus Rn/Zn is implemented
by an n × n matrix Tn with integer entries and determinant
±1. The requirement that the matrix Tn has integer entries
ensures that Tn maps the torus into itself. The requirement
that the determinant of the matrix Tn is ±1 guarantees in-
vertibility. Tn is strong mixing if none of its eigenvalues is
a root of unity. The logarithm of the largest eigenvalue of
Tn coincides with the Lyapunov exponent of the automor-
phism (with respect to Lebesgue measure). Torus automor-
phisms are typically used in diffusion layers (i.e., to spread
local changes).

The n-torus automorphism

y = Tnx (mod 1),

where x, y ∈ [0, 1]n, generates the finite-state n-torus map

η = Tnξ (mod M),

where M ∈ N and ξ, η ∈ (ZM)n. As an example, consider
the family of 2-dimensional cat maps

(
η1
η2

)
=

(
g + 1 g

1 1

) (
ξ1
ξ2

)
(mod 256),

where ξ1, ξ2, η1, η2, g ∈ Z256. The special case g = 1 is
known as the pseudo-Hadamard transform (PHT),

H2 =

(
2 1
1 1

)
,

and it is used in various cryptosystems because it requires
only two additions in a digital processor.

Finite-state maps of the 2- and 4-torus have been pro-
posed in the literature for the diffusion layers of, for in-
stance, 8-byte Feistel ciphers whose half-round function



acts on 4-byte blocks [20]. A half-round consists of four
chaotic 4 × 4 S-boxes, each one built by interleaving the
PHT and the 4-byte Hadamard-type permutation

R4 =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



in the form


η1
η2
η3
η4


= H4R4H4



ξ1
ξ2
ξ3
ξ4


(mod 256),

where

H4 =

(
H2 0
0 H2

)
.

The branch number and the minimal Euclidean stretching
of this sort of mixing transformations (or layers) were stud-
ied in [20]. The branch number is the sum of the number of
active input S-boxes and that of active output S-boxes, min-
imized over the input space; it is an important parameter in
differential crytanalysis.

4.4. Substitutions based on the approximation of mix-
ing maps

Let Fn be a permutation of n-bit blocks (or an n × n S-
box) and, as usual, denote by LPFn and DPFn the linear
approximation probability and differential approximation
probability of Fn, respectively (see [18] for precise defi-
nitions of these ‘probabilities’). LPFn and DPFn measure
the immunity of the block cipher Fn to attacks mounted
on the corresponding cryptanalysis, immunity being higher
the smaller their values. In [18] we have shown that if Fn is
a cyclic periodic approximation of a mixing automorphism
and some assumptions are fulfilled, then LPFn and DPFn

get asymptotically close to their greatest lower bounds 1/2n

and 1/2n−1, respectively, thus obtaining an arbitrarily close-
to-optimal immunity to both cryptanalyses. Therefore, we
have proven, as suggested by Shannon, that, in principle,
mixing transformations may indeed be used in encryption
systems. Unfortunately, the proofs are non-constructive so
that one has to content oneself with heuristic implementa-
tions of the underlying idea.

As an example, consider the 2-torus automorphism T2 =

(ti j) with

t11 = 587943273, t12 = 185921552200509715,
t21 = 2, t22 = 632447247.

For this chaotic map, the corresponding (heuristic) periodic
approximation with n = 18 has the following values of DP
and LP: LP = 0.00002629 with | LP− 2−18 |= 2.25× 10−5,
and DP = 0.00003052 with | DP−2−17 |= 2.29×10−5 [18].

5. Final remarks and conclusions

In this paper we have proposed some theoretical con-
cepts underlying digital chaos-based cryptography and
presented some basic implementations of chaotic crypto-
graphic primitives. Needless to say, our exposition is far
from exhaustive, being rather meant as a general view of
what is going on in a field of rapid growth. Also for this
reason, we have renounced to present here more recent de-
velopments in chaotic cryptology, since time is needed to
asses their security.

To complete the picture, some words of caution are
in order here. Although, at theoretical level, it seems
that chaotic systems are ideal candidates for cryptographic
primitives (remember, for example, that periodic approxi-
mations of mixing automorphisms have arbitrary close to
optimal immunity to linear and differential cryptanalysis,
Sect. 4.4), at the practical level, chaotic ciphers are still
slower than the corresponding conventional ones. Thus,
the public-key cipher proposed in [19], based on the finite-
state Chebyshev map, is slower than RSA, and the 128-bit
block cipher proposed in [20], that includes sixteen 8 × 8
S-boxes (all the same) designed with the finite-state tent
map and a finite-state 4-dimensional torus map as chaotic
mixing transformation, is also slower than the best conven-
tional algorithms, such as AES. In connection with this,
let us remind that we showed in Sect. 3 that chaotic cryp-
tographic primitives cannot be the most discretely chaotic
permutations in the sense of Definition 3.4. Since this re-
sult is of asymptotic nature, we believe that it has no prac-
tical consequences but, nevertheless, it does put limits (if
theoretical) to chaotic cryptography.

We may conclude that reaching the same standards of
security and speed as in conventional cryptography, should
be the priority of chaotic cryptography in the next future.
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