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Abstract

We propose a definition of discrete Lyapunov exponent for an arbitrary permutation of a finite lattice. For discrete-time

dynamical systems, it measures the local (between neighboring points) average spreading of the system. We justify our

definition by proving that, for large classes of chaotic maps, the corresponding discrete Lyapunov exponent approaches the

largest Lyapunov exponent of a chaotic map when M → ∞, where M is the cardinality of the discrete phase space. In

analogy with continuous systems, we say the system has discrete chaos if its discrete Lyapunov exponent tends to a positive

number (or to ∞), when M →∞. We present several examples to illustrate the concepts being introduced.

I. Introduction

The word chaos was introduced in mathematics in the nineteen-seventies [1] to encapsulate the bizarre

dynamics of some continuous maps on one-dimensional intervals. What came afterwards is well-known, as

it is also well-known that a significant part of it could not have been achieved without the aid of computers.

Indeed, most of the research activity in the field of dynamical systems at that time was supported – and

often inspired – by computer calculations due to the mind-boggling complexity of the phenomena under

scrutiny. Thus, bifurcation diagrams, basins of attraction, Julia sets or fractal attractors were displayed

numerically, as many other hallmarks of chaos and complex dynamics. Certainly, the researchers were

aware from the beginning of the impossibility of their pursuit: no computer can show, for instance, that an

orbit is aperiodic since all orbits on a computer (or a finite-state machine for this matter) are eventually

periodic. And aperiodicity is just one among several key properties (like sensitivity to initial conditions

or density of periodic points) of chaotic motion, which belong in the realm of continuous phase space.

In other words: there is no chaos in a discrete phase space —at least in a strict sense. Since, chaos

is a particular characteristic of motion in continuous spaces, strictly speaking, continuous value chaotic

signals may be used to transmit information only as a modulation technique. Other functional blocks of a

digital communication system, such as compression, coding, and/or encryption, describe transformations

(or mappings) from finite sets to (in general different) finite sets.

What makes chaotic systems so attractive both for theoreticians and practitioners is their random-like

behavior —in spite of being deterministic. As way of illustration, let us mention that, already in 1949,

C. Shannon [2] proposed this kind of transformations to construct secure cryptosystems. It is thus no

surprise that, when chaos theory flourished in the nineteen-eighties and -nineties, several cryptosystems

were proposed based on the discretization of chaotic maps, e.g. the generalized baker’s map, cat map,

standard map, and many others. Viewing how the resulting permutations mix the pixels of digital pictures

[3], one cannot but admit that their ‘confusion’ and ‘diffusion’ properties are seemingly unsurpassed —in

spite of being periodic. The examples could be multiplied with the same message: there must be some

sense in which discrete maps may be also called chaotic. One can imagine that the pioneers of random

number generation by arithmetic methods faced a similar, uneasy situation. Just as, thanks to their

insight, we can talk now of pseudo-randomness in a definite sense or of some sequences as being more

random than others, it should be also meaningful to talk of would-be chaos or of some discrete maps as
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being more chaotic (and hence better for, say, cryptographic applications) than others.

Let us remind at this point that the convenience of extending the idea of chaos to discrete-space

systems rose also in quantum systems, since their phase spaces are effectively discretized by Heisenberg’s

uncertainty principle and the indistinguishability of identical particles. Not surprisingly, the quantum

physicists coined the term pseudo-chaos for the sort of irregular phenomena they were interested in. The

concept of pseudo-chaos has been introduced in attempts to interpret quantum chaos, and to understand

its mechanism and physical meaning [4], [5], [6]. Pseudo-chaos occurs in classical mechanics as well.

Digital computer is a very specific classical “dynamical system”: it is an “over-quantized” system [6],

meaning that any quantity is discrete, while in quantum mechanics only the product of two conjugated

variables are so. Owing to the discreteness, any dynamical trajectory in computer becomes eventually

periodic, the effect being well known in the theory and practice of pseudo-random number generators.

Since pseudo-chaos holds thus connotations of quantum phenomenology, we propose the more neutral

term discrete chaos in the context of discrete mathematics.

A set is chaotic if its asymptotic measure (natural measure) has a positive Lyapunov exponent. If the

largest Lyapunov exponent is positive, a volume element is expanded in some direction at exponential

rate and neighboring trajectories are diverging. This property is called sensitive dependence on initial

conditions. Therefore, among many indicators of chaotic motion, positivity of the largest Lyapunov expo-

nent is perhaps the most significant, both in theory [7] and applications [8]. The exponential divergence

of two trajectories evolving under identical equations of motion from slightly different initial conditions

is a fingerprint of chaos. For ergodic systems, the exponential rate of growth converges to the Lyapunov

exponent, independently of the particular trajectory chosen (for almost all initial conditions). A useful

generalization of Lyapunov exponents are finite-time Lyapunov exponents [7] calculated over a finite time

interval along a given trajectory. In this paper we try to come to grips with the concept of discrete chaos

by proposing a first tool to measure it, namely, the discrete Lyapunov exponent.

Previous Work – Despite of the fact that chaotic-like systems with finite phase space have been used

in digital communication systems, for examples as chaotic digital encoders [9], chaotic turbo codes [10],

pseudo-chaotic time hopping for ultra wind band impulse radio [11], and chaos-based cryptography [12],

[13], [14], the question “what is chaos in finite phase space systems?” has still been unanswered. There

are several references to the problem of chaos-like properties in finite phase space systems, although none

of them define discrete chaos. Masuda and Aihara [15] considered a discrete version of the skew-tent map,

which exploits important chaotic properties such as the sensitive dependence on initial conditions and the

exponential information decay. They discussed the difference between the discretized map and the original

map, explaining the ergodic-like and chaotic-like properties of the discretized map. In reference [14], the

authors explored the feasibility of designing cryptographically secure substitutions via approximation

of mixing maps by periodic transformations. The periodic approximation of mixing maps are dynamical

systems with finite phase-space. The expectation behind this approach is, of course, that the nice diffusion
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properties of such maps will be inherited by their approximations, at least if the convergence rate is

appropriate and the associated partitions are sufficiently fine.

Our Work – In this paper we propose a definition of discrete Lyapunov exponent. As its continu-

ous counterpart, the discrete Lyapunov exponent measures local (between neighboring points) average

spreading of the discrete-time discrete-space dynamical system considered. Let M be a cardinality of

the discrete phase-space. We justify our definition by showing that, for large classes of chaotic maps,

the corresponding discrete Lyapunov exponent approaches the largest Lyapunov exponent of a chaotic

map when M → ∞. We further propose a plausible definition of discrete chaos using similar tools as

for (classical) chaos. Since the notion pseudo-chaos has already been reserved for the statistical behavior

of the dynamical system with discrete energy and/or frequency spectrum, we suggest the term discrete

chaos to describe chaos-like properties in finite phase-space systems. More precisely, we define discrete

chaos in terms of discrete Lyapunov exponent in a similar way as for continuous systems: the system is

said to be discretely chaotic if its discrete Lyapunov exponent approaches a positive number (or +∞),

when M →∞. Preliminary short version of this work has appeared in [16].

The paper is organized as follows. Section II introduces the discrete Lyapunov exponent for maps

on one- and higher-dimensional regular lattices, although for simplicity we consider in the second case

only two-dimensional lattices. In Sect. III we establish the connection explained before between the

discrete Lyapunov exponent of a permutation on M elements and the Lyapunov exponent of a related

continuous map: the former converges to the latter when M → ∞. The speed of this convergence is

studied numerically in Sect. IV with the tent, logistic, Henon, and coupled logistic maps. Sect. V contains

the basic concepts of our new approach to discrete chaos, not least the very definition of discrete chaos.

All these sections have been supplied with plenty of examples to illustrate the concepts being introduced.

In section VI we close our paper with conclusions.

II. Discrete Lyapunov exponent

A. Preliminaries

Among many indicators of chaotic motion, positivity of the largest Lyapunov exponent is perhaps

the most significant. The exponential divergence of two trajectories evolving under identical equations

of motion from slightly different initial conditions is a fingerprint of chaos. Therefore, for computing

the largest Lyapunov exponent of a chaotic map, one considers two trajectories evolving from “slightly”

different initial conditions x and x + ∆x, and puts ∆x → 0. More precisely, let f : I → I, I = [0, 1] be

a piecewise smooth map, µ be a Borel probability f -invariant measure, and x ∈ I be a µ-typical point.

Then the quantity

λf = lim
n→∞

1
n

ln |Dfn(x)| =
∫ 1

0

ln |f ′(x)|dµ(x)

is said to be the Lyapunov exponent of f .
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Let us now consider a permutation F : {0, 1, . . . M−1} → {0, 1, . . .M−1}. Clearly, all trajectories of F

are periodic. We say that i±1 are neighboring points of i. We further assume that {0, 1, . . . , M −1} ⊂ R,

so that the ‘end’ points 0 and M − 1 have only one neighbor. Let Ui = {i− 1, i + 1}, i = 1, 2, . . . ,M − 2,

U0 = {1}, and UM−1 = {M − 2}. Clearly, the set Ui contains all neighbors of the point i. Let ci be an

arbitrary element of the set Ui, ci ∈ Ui; we write d(ci, i) = F (ci) − F (i). We argue in the next sections

that the quantity

λF =
1
M

M−1∑

i=0

ln | d(ci, i) |

plays role of the Lyapunov exponent of F . The quantity λF preserves many of the properties of the

Lyapunov exponents; in addition, if F is an appropriate discretization of a chaotic map f (see bellow),

then, for all ci ∈ Ui, limM→∞ λF = λf . However, we stress that the the property that two conjugate

maps of intervals have same Lyapunov exponents, does not hold for discrete systems.

What are the main differences between the quantities λf and λF ? When extending (generalizing) the

definition of Lyapunov exponent to discrete systems, one faces several obstacles. Lyapunov exponent

measures the exponential divergence of two trajectories evolving under equations of motion from slightly

different initial conditions. For continuous systems the limit ∆x → 0 is well defined, while for discrete

systems the term ‘slightly different initial conditions of the point i’ means i ± 1, and therefore, it is not

uniquely defined. Let us illustrate this with an example. Consider the permutation F : {0, 1, . . . 9} →
{0, 1, . . . 9} defined as

F (x) =





k if x = 2k k = 0, 1, . . . 4,

9− k if x = 2k + 1 k = 0, 1, . . . 4.

There are 28 different quantities λF such that

ln 1 · 2 · · · 9
9

≤ λF ≤ ln 1 · 2 · · · 9 + ln 9
9

.

There exists a simple way to resolve this problem: when the set Ui has more than one element, we pick

up the neighboring point ci of the point i according to some rule. The main results of this paper are not

affected by ci, however the value of λF depends on ci, so the rule should be stated clearly.

B. One-dimensional maps

Let us consider a map

F : {0, 1 . . . ,M − 1} → {0, 1 . . . , M − 1} . (1)

We assume that the map F is 1 : 1 and onto (bijection). Clearly, all trajectories of F are periodic; let αj

be a periodic orbit of F with period Tj . Since F is a bijection, it follows that ∪jαj = {0, 1 . . . ,M − 1} and
∑

j Tj = M . We say that i±1 are neighboring points of i. We further assume that {0, 1, . . . , M −1} ⊂ R,

so that the ‘end’ points 0 and M − 1 have only one neighbor.
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Let Ui = {i−1, i+1}, i = 1, 2, . . . ,M −2, U0 = {1}, and UM−1 = {M −2}. Clearly, the set Ui contains

all neighbors of the point i. Let ci ∈ Ui. If the set Ui has more than one element, we adopt the following

rule: the neighbor of i is ci = i + 1. We define the discrete Lyapunov exponent of the permutation F as

λF =
1
M

M−1∑

i=0

ln | F (ci)− F (i) |= 1
M

M−1∑

i=0

ln d[F (ci), F (i)], (2)

where d(x, y) is the Euclidean distance (in R) between two integers x and y, d(x, y) =| x − y |. In the

above equation all terms measure the divergence of two trajectories evolving in one iteration from two

“slightly” different initial conditions: an initial point i and its neighbor i + 1. Note that in the last term

the neighbor of M − 1 is the point M − 2. Thus, the discrete Lyapunov exponent measures the average

spreading of the map F .

Remark 1: Note that we assume that the phase space of our dynamical system is a subset of the real

numbers. The other possibility that the phase space is a subset of the unit circle is not treated in this

paper.

Remark 2: One can also define the discrete Lyapunov exponent with randomly choosing in Eq. 2, from

two neighboring points i + 1 and i − 1, the neighbor ci of i. There exist 2M−2 such discrete Lyapunov

exponents. In a typical case, all discrete Lyapunov exponents are close to each other. We stress that all

the results of this paper (theorems 1 through 4) hold for all 2M−2 discrete Lyapunov exponents.

Let α = {a0, a1 = F (a0), . . . aT−1 = F (aT−2)} be a periodic orbit with period T ; in other words, let

a0 6= a1 6= . . . 6= aT−1 and FT (a0) = a0. We define the discrete Lyapunov exponent of the map F for the

periodic orbit α as

λ(F,α) =
1
T

T−1∑

k=0

ln | F (ak + 1)− F (ak) | . (3)

Observe that the discrete Lyapunov exponent of the map F can also be rewritten as a weighted sum of

the discrete Lyapunov exponents of all periodic orbits:

λF =
∑

j

Tj

M
λ(F,αj). (4)

Clearly, 0 ≤ λF ≤ ln(M − 1). The map with null discrete Lyapunov exponent is F (x) = x for each

x ∈ {0, 1, . . . , M − 1}. The set of all different maps F can be divided into equivalent classes, each class

having same discrete Lyapunov exponent.

We now present four examples. In all these examples we consider permutations F of the set {0, 1, . . . ,M−
1}.
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Example 1: The maps F (i) defined as

F
(i)
M (x) =





x if 0 ≤ x ≤ i,

i + 3 if x = i + 1,

i + 1 if x = i + 2,

i + 2 if x = i + 3,

x if x ≥ i + 4,

have, for each i = 0, 1, . . .M − 5, the same discrete Lyapunov exponent: λF = (ln 3 + 2 ln 2)/M .

Example 2: Let M = 2m and let m be an even number. Consider the map F defined as

F (x) =





x + m (mod M) for x = 2p,

x for x = 2p + 1,

where 0 ≤ p ≤ m− 1. Since |F (i + 1)− F (i)| ≥ m− 1, it follows that λF ≥ ln(m− 1).

Example 3: Let M = 2m. We define Fnon as

Fnon(x) =





k if x = 2k k = 0, 1, . . . m− 1,

M − 1− k if x = 2k + 1 k = 0, 1, . . . m− 1.

The discrete Lyapunov exponent of this map is equal to

λFnon =
1
M

ln(M − 1)!.

We adopt the following definition of perfect nonlinearity (note that our definition is weaker than the usual

one): F has a perfect nonlinearity if the differences |F (i + 1)− F (i)|, i = 0, 1, . . . , M − 2 take all possible

values 1, 2, . . . ,M − 1. This example shows the existence of maps with perfect nonlinearity; the discrete

Lyapunov exponent of all such maps is equal to λFnon .

Remark 3: As M → ∞, the discrete Lyapunov exponent of the permutation F may approach zero, a

finite positive number, or infinity. For example, it is easy to see that limM→∞(ln 3 + 2 ln 2)/M = 0 and

limM→∞ 1
M ln(M − 1)! = ∞.

Example 4: Let M = 2m be an even number. We define Fmax as

Fmax(x) =





m + k if x = 2k k = 0, 1, . . . m− 1,

k if x = 2k + 1 k = 0, 1, . . . m− 1.

The discrete Lyapunov exponent of this map is equal to

λFmax =
m + 1
2m

ln m +
m− 1
2m

ln(m + 1). (5)

Remark 4: Let FM be a family of permutations (parameterized by M) of the set {0, 1, 2, . . . , M − 1}.
Then the set of all families (of permutations) can be divided into three subsets A0, Afinite, and A∞ for

which the corresponding discrete Lyapunov exponents tend to zero when M → ∞, approach a finite
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number when M → ∞, and tend to infinity when M → ∞, respectively. Although is quite intriguing to

analyze these sets, especially the properties of Afinite and A∞, this is beyond the scope of the paper and

will be treated separately.

Remark 5: Let f : I → I be a chaotic map, I = [0, 1]. Let FM be a family of permutations of the set

{0, 1, 2, . . . , M −1} induced by the map f as described in the next section. We prove in Section III that in

this case limM→∞ λFM = λf , where λf is the Lyapunov exponent of f . Clearly FM ∈ Afinite. Let Achaos

be a set of all families of permutations induced by chaotic maps. Then obviously Achaos j Afinite.

C. Higher-dimensional maps

We now consider the case of higher-dimensional maps. For notational simplicity we will consider only

two-dimensional maps. Let Ui be the set of all neighboring points of i = (x, y). If Ui has more than one

point, we adopt the following rule: if (x, y + 1) ∈ Ui, then we say (x, y + 1) ∈ Ui is the neighbor of i; if

(x, y + 1) /∈ Ui and (x, y − 1) ∈ Ui, we say (x, y − 1) ∈ Ui is the neighbor of i; and if (x, y + 1) /∈ Ui and

(x, y − 1) /∈ Ui, we say (x + 1, y) ∈ Ui is the neighbor of i; Consider the set

C = {m0, m1, . . . ,mM−1} ⊆ {(i, j) | 0 ≤ i ≤ I1 − 1, 0 ≤ j ≤ J1 − 1},

endowed with the metric d, such that d(m0, (0, 0)) ≤ d(mi, (0, 0)) for all i > 0 and m0 is a neighbor of

(0, 0), and d(mi,mi−1) ≤ d(mj ,mi−1) for all j > i and mi is a neighbor of mi−1. Let F : C → C be a

permutation.

We define the discrete Lyapunov exponent of order s for the permutation F as follows:

λ
(s)
F =

1
Ms

M−1∑

i=0

s∑

k=1

ln
d[F k(mi+1), F k(mi)]

d[F k−1(mi+1), F k−1(mi)]
, (6)

where F k is the composition of F with itself k times, k = 1, 2, . . . s, and F 0 is the identity permutation.

Equivalently, the last formula can be rewritten, see the Appendix B for a derivation, as

λ
(s)
F =

1
Ms

M−1∑

i=0

ln
d[F s(mi+1), F s(mi)]

d[mi+1,mi]
.

Remark 6: Since there exists N1 such that FN1(x) = x is the identity permutation, it follows that

λ
(N1)
F = 0. Therefore, we assume s is always finite, s = 1, 2, . . . , N1 − 1.

Remark 7: If d is the Euclidean distance (in R2), and x = (x1, x2), y = (y1, y2), then d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2. In the special case of one-dimensional lattice endowed with the Euclidean

metric and s = 1, the above definition reduces to (2).

Remark 8: For a given permutation, it may happen that (i) all discrete Lyapunov exponents of order

s, λ
(s)
F , are ‘different’ for all s, but also (ii) there exists s0 such that for some l ≥ 2, the discrete Lyapunov

exponents λ
(s0)
F , λ

(s0+1)
F , . . ., λ

(s0+l)
F are ‘close’ to each other.
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Remark 9: Equation (6) defines the discrete Lyapunov exponent of order s for a permutation. In a

similar way as in (3), one can define the discrete Lyapunov exponent of order s of a permutation for a

periodic orbit.

Example 5: Consider the 2D lattice S = {m = (j, k) ∈ N2 : 0 ≤ j, k ≤ N − 1} with N prime, endowed

with the metric

d(m,m′) = |(j − j′) + (k − k′)N | .
Furthermore, assume that S is lexicographically ordered left-to-right, bottom-to-top: m0 = (0, 0) < ... <

mi = (j, k) < mi+1 = (j′, k′) < ... < mN2−1 = (1, 1), where (j′, k′) = (j + 1, k) if j < N − 1 and

(j′, k′) = (0, k + 1) if j = N − 1. The distance d(m,m′) counts the number of points between m and m′

(including one end) in the ordered set (S, <). In particular, d(mi,mi+1) = 1 for every i.

Define the N2-permutation F : S → S by

F ((j, k)) = (j + k modN, k).

The continuous counterpart of F is a skew horizontal translation on the 2D torus. In general, F s((j, k)) =

(j + sk modN, k), hence FN is the identity. Thus, in order to calculate the DLE of order s ≥ 1 for F,

λ
(s)
F =

1
(N2 − 1)s

N2−2∑

i=0

ln
d(F s(mi), F s(mi+1))

d(mi,mi+1)
,

we only need to calculate the distances d(F s(mi), F s(mi+1)) for s = 1, 2, ..., N−1. We consider two cases.

Case 1. mi = (j, k) is not a right edge point of S, i.e., j 6= N − 1. Then, for s = 1, 2, ..., N − 1, we have

F s(mi) = (j + sk modN, k), F s(mi+1) = (j + sk + 1 modN, k) and

d(F s(mi), F s(mi+1)) =





N − 1 if j = −sk − 1 modN

1 otherwise
, (7)

i.e., for (mi, mi+1) to verify d(F s(mi), F s(mi+1)) = N − 1, mi must be such that F s(mi) is the right

edge of its row. Therefore, the contribution to λ
(s)
F (1 ≤ s ≤ N − 1) from all pairs (mi,mi+1) lying on

the same row k = 1, 2, ..., N − 1 of S (k = 0 being excluded because the first condition of (7) implies then

j = N − 1) is (up to normalization)
N−2∑

j=0

N−1∑

k=1

ln
d(F s(mi), F s(mi+1))

d(mi,mi+1)
= (N − 1) ln(N − 1).

Case 2. mi is a right edge point, i.e., mi = (N − 1, k) and mi+1 = (0, k + 1), 0 ≤ k ≤ N − 2. In this

case, F s(mi) = (N − 1 + sk modN, k), F s(mi+1) = (s(k + 1) modN, k + 1) and

d(F s(mi), F s(mi+1) = (−sk modN) + (s(k + 1) modN) + 1.

Thus, the contribution to λs
F (1 ≤ s ≤ N − 1) from those pairs (mi,mi+1) lying on the opposite ends of

consecutive rows amounts (up to normalization) to
∑

j=N−1,0≤k≤N−2

ln
d(F s(mi), F s(mi+1))

d(mi,mi+1)
= ln 2 + ... + ln N = ln N !.
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Putting everything together, we finally get

λ
(s)
F =

1
(N2 − 1)s

((N − 1) ln(N − 1) + ln N !)

for s = 1, 2, ..., N − 1 and λ
(N)
F = 0 since FN is the identity.

Example 6: On the lattice (S, <) of Example 5, take now the metric

δ(m,m′) = |(j − j′)|+ |k − k′|

for m = (j, k), m′ = (j′, k′) (the continuous counterpart of δ is equivalent to Euclidean metric on R2) and

consider again the same two cases.

In Case 1 there are no changes with respect to Example 5 since δ(m,m′) = d(m,m′) = |j − j′| for

points lying on the same row (k = k′).

But for points lying on different rows (Case 2 ), the metrics d and δ are different. Thus, if mi is the right

edge (N − 1, k) and mi+1 the left edge (0, k + 1), 0 ≤ k ≤ N − 2, then δ(mi,mi+1) = N . Furthermore,

δ(F s(mi), F s(mi+1) = |(sk − 1 modN)− (s(k + 1) modN)|+ 1,

so that ∑

j=N−1,0≤k≤N−2

ln
d(F s(mi), F s(mi+1))

d(mi,mi+1)
= ln

1
N

+ ... + ln
N − 1

N
= − ln

NN−1

(N − 1)!
.

We get now

λ
(s)
F =

1
(N2 − 1)s

(
ln(N − 1)!− (N − 1) ln

N

N − 1

)

for s = 1, 2, ..., N − 1.

Example 7: Consider now the lattice (S, <, δ) of Example 6 with the new permutation

G((j, k)) = (j, k + j modN),

whose continuous counterpart is a skew vertical translation on the 2D torus. Again, GN is the identity

so that we only need to consider the iterates Gs with s = 1, 2, ..., N − 1.

In Case 1 (j 6= N − 1) we have Gs(mi) = (j, k + sj modN), Gs(mi+1) = (j + 1, k + s(j + 1) modN)

and thus

δ(Gs(mi), Gs(mi+1)) =





s + 1 if k + sj modN < k + s(j + 1) modN

N − s + 1 if k + s(j + 1) modN < k + sj modN
.
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It follows that, for s = 1, 2, ..., N − 1,

N−2∑

j=0

N−1∑

k=0

ln
δ(Gs(mi), Gs(mi+1))

δ(mi, mi+1)

= ln(s + 1)
N−1∑

k=0

(
N − 1−

⌊
s(N − 1) + k

N

⌋)
+ ln(N − s + 1)

N−1∑

k=0

⌊
s(N − 1) + k

N

⌋

= N(N − 1) ln(s + 1) +

(
N−1∑

k=0

⌊
s(N − 1) + k

N

⌋)
ln

N − s + 1
s + 1

= N(N − 1) ln(s + 1) + s(N − 1) ln
N − s + 1

s + 1
.

If, else, mi = (N − 1, k) (Case 2 ) and thus mi+1 = (0, k + 1), 0 ≤ k ≤ N − 2, then Gs(mi) =

(N − 1, k + s(N − 1) modN) = (N − 1, k − s modN), Gs(mi+1) = (0, k + 1) and

δ(Gs(mi), Gs(mi+1) = N − 1 + |k + 1− (k − s modN)|

=





N − s if s ≤ k

2N − s− 2 if s > k
.

It follows,

∑

j=N−1,0≤k≤N−2

ln
δ(Gs(mi), Gs(mi+1))

δ(mi, mi+1)

=
s−1∑

k=0

ln
2N − s− 2

N
+

N−2∑

k=s

ln
N − s

N

=





s ln 2N−s−2
N − (N − s− 1) ln N

N−s if 1 ≤ s ≤ N − 2

(N − 1) ln N−1
N if s = N − 1

.

In particular,

λ
(1)
G =

1
N2 − 1

[
N(N − 1) ln 2 + (N − 1) ln

N

2
+ ln

2N − 3
N

− (N − 2) ln
N

N − 1

]
,

λ
(N−1)
G =

1
N2 − 1

[(N − 1) ln 2 + ln(N − 1)] .

III. Properties of the discrete Lyapunov exponent

A. One-dimensional maps

In this section we prove several properties of the discrete Lyapunov exponent for the permutations of

one-dimensional sets. The first theorem states that for ergodic permutations (for permutations on lattices,

ergodicity is equivalent to transitivity or cyclicity: the orbit of any point visits all the state space), the

discrete Lyapunov exponent computed as the space average is equal to the discrete Lyapunov exponent

computed as time average (along the trajectory). The second theorem proves what permutation has the

largest discrete Lyapunov exponent. Finally, the third theorem, which is our main result in this section,

justifies the use of the term “discrete Lyapunov exponent”. The proof of the next theorem is obvious.
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Theorem 1: If the permutation is cyclic, then the discrete Lyapunov exponent computed as the space

average, Eq. (2), is equal to the discrete Lyapunov exponent computed as time average, Eq. (3).

The map Fmax, see Example 4, has the largest discrete Lyapunov exponent among all permutations of

the set {0, 1, . . . , M − 1}. The proof of following theorem is given in the Appendix A.

Theorem 2: For any permutation F of the set {0, 1, . . . , M − 1} we have λF ≤ λFmax .

Let us now consider a map

F : {m0,m1 . . . ,mM−1} → {m0,m1 . . . , mM−1} , (8)

where F is 1 : 1 and mi are integers, m0 ≥ 0, and mi < mj if i < j. Then we define discrete Lyapunov

exponent as:

λF =
1
M

M−1∑

i=0

ln
d[F (mi+1), F (mi)]

d[mi+1,mi]
, (9)

where by definition mM = mM−2. We stress that in Eq (9), d is the Euclidean distance (in R) of the points

x and y, that is d(x, y) =| x− y |. Note that Eq. (9) reduces to Eq. (2) if mi = i for i = 0, 1, . . . , M − 1.

Let zj+1 = f(zj), j = 0, 1, . . . , M−1, be a “typical” trajectory of length M of a one-dimensional chaotic

map f : [0, 1] → [0, 1], such that zj+1 6= zj for all j and | zM−1 − z0 |< ε. We define f(zM−1) = z0 and

order zj to obtain xj . Therefore, we consider a set {xi} of M points, x0 < x1 < . . . < xM−1, such that

f(xi) = xj for some j. Define mi = Fl(xiN), where Fl(z) denote the floor of z and N is chosen such that

mi 6= mj for all i and j. The map f induces a permutation

F : {m0,m1, . . . mM−1} → {m0,m1, . . . mM−1}

as F (mi) = mj when f(xi) = xj .

Theorem 3: Let zj+1 = f(zj) be a “typical” trajectory of a one-dimensional chaotic map f : [0, 1] →
[0, 1] with Lyapunov exponent λf . Consider only the first M points of this trajectory, j = 0, 1, . . . ,M −1.

Let F be the permutation of the set {m0,m1, . . . , mM−1} induced by the map f as described above. Then

lim
M→∞

λF = λf

Proof: Define the map f̄ as follows. Let z̄i = mi/N . Note z̄i ≈ zk. We define:

f̄(z̄i) = z̄j ⇔ z̄j =
mj

N
=

F (mi)
N

.

It follows that f̄(z̄i) = z̄j ≈ zl = f(zk). Therefore, f̄(z̄i) ≈ f(zk). Let zp be the closest point to zk;

we write zp = zk + εk. Clearly z̄i+1 ≈ zk + εk and f̄(z̄i+1) ≈ f(zk + εk). Denote δ = max |εk|. It is

easy to see that as M → ∞, N → ∞ and δ → 0. Moreover, when N → ∞, z̄ approaches z as well as

limN→∞ f̄(z̄) = f(z).
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Now we have

lim
M→∞

lim
N→∞

λF = lim
M→∞

lim
N→∞

1
M

M−1∑

i=0

ln
∣∣∣∣
F (mi+1)− F (mi)

mi+1 −mi

∣∣∣∣

= lim
M→∞

lim
N→∞

1
M

M−1∑

i=0

ln
∣∣∣∣
f̄(z̄i+1)− f̄(z̄i)
(mi+1 −mi)/N

∣∣∣∣

= lim
M→∞

lim
N→∞

1
M

M−1∑

i=0

ln
∣∣∣∣
f̄(z̄i+1)− f̄(z̄i)

z̄i+1 − z̄i

∣∣∣∣

= lim
M→∞

1
M

M−1∑

k=0

ln
∣∣∣∣
f(zk + εk)− f(zk)

εk

∣∣∣∣

= lim
M→∞

lim
δ→0

1
M

M−1∑

k=0

ln
∣∣∣∣
f(zk + εk)− f(zk)

εk

∣∣∣∣

= lim
M→∞

1
M

M−1∑

k=0

ln |f ′(zk)|

= λf

B. Higher-dimensional maps

We now consider the case of higher-dimensional maps. For notational simplicity we will again consider

only two-dimensional maps. In this section we generalize the Theorem 3 for two-dimensional permutations.

We note that the Theorem 1 holds also for two-dimensional permutations, in contrast to two-dimensional

chaotic maps.

Let zj+1 = f(zj), j = 0, 1, . . . ,M − 1, be a “typical” trajectory of length M of a two-dimensional

chaotic map f : R2 → R2, such that zj+1 6= zj for all j and d(zM−1, z0) < ε. We define f(zM−1) = z0.

For simplicity only we assume now that the chaotic attractor is located in [0, 1]2. Therefore, for all zj ,

zj ∈ [0, 1]2. Define xi = Fl(ziN), where N is chosen such that xi 6= xj for all i and j. Thus, we obtain

the set

B = {x0, x1, . . . , xM−1},

where xi = (ui, vi), and ui ≥ 0, vi ≥ 0 are integers. We reorder the set B to obtain the set C,

C = {m0,m1, . . . , mM−1},

such that d(m0, (0, 0)) ≤ d(y, (0, 0)) for all y ∈ B, and d(mi,mi−1) ≤ d(y, mi−1) for all y ∈ B \
{m0,m1, . . . , mi−1}. This reordering defines a permutation P : C → B. Let P (mi) = xk and P (mj) = xl;

then the map f induces the permutation F on the set C as F (mi) = mj when f(zk) = zl. Note that for

a typical trajectory, the permutation F has a single periodic trajectory with period M .

We first give the definition of a chaotic attractor. A closed invariant set A is called chaotic attractor

if (a) for almost (with respect to Lebesgue measure) every point in the neighborhood of A its forward
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orbit is dense on an unstable manifold; and (b) there exists a SRB (Sinai-Ruelle-Bowen) measure which

is smooth along the unstable manifold.

Theorem 4: Assume that A is a chaotic attractor of a two-dimensional map f : IR2 → IR2. Assume

further that µ is a SRB (Sinai-Ruelle-Bowen) invariant measure supported on A, and let λf > 0 be the

largest Lyapunov exponent for this measure. Let zj+1 = f(zj) be a “typical” trajectory on A. Consider

only the first M points of this trajectory, j = 0, 1, . . . ,M−1. Let F : {m0, . . . , mM−1} → {m0, . . . , mM−1}
be the permutation induced by the map f as described above. Then there is a sequence s(M) such that

lim
M→∞

λ
(s(M))
F = λf

Proof: It is well-known that for randomly chosen initial vector u0, the maximal Lyapunov exponent

of the trajectory fs(x), λf , is given by

λf = lim
s→∞

1
s

ln ‖Dfs(x)(u0)‖ .

This means that for a given ε > 0 and for randomly chosen u0, there exists s0 such that
∣∣∣∣λf − 1

s
ln ‖Dfs(x)(u0)‖

∣∣∣∣ <
ε

2
(10)

for s0 ≤ s. On the other hand, we have, by definition of Frechet derivative, that for a given s and for

sufficiently small u0,
‖fs(x + u0)− fs(x)−Dfs(x)(u0)‖

‖u0‖ <
ε

2
.

Consequently,

A ≡
∥∥∥∥

fs(x + u0)− fs(x)
‖u0‖ −Dfs(x)

(
u0

‖u0‖
)∥∥∥∥ <

ε

2
. (11)

We write

B =
∥∥∥∥

fs(x + u0)− fs(x)
‖u0‖

∥∥∥∥ and C =
∥∥∥∥Dfs(x)

(
u0

|u0|
)∥∥∥∥ .

Next, we have

| B − C |< A (12)

and by the Mean Value Theorem

|ln B − ln C| =
∣∣∣∣
1
θs
|B − C|

∣∣∣∣ , (13)

where θs is between B and C.

Thus, by (11), (12), and (13) for a given s large enough and sufficiently small randomly chosen u0, we

have ∣∣∣∣
1
s

ln B − 1
s

ln C

∣∣∣∣ ≤
1

sθs

ε

2
.
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Now, since C for large s is close to exp(sλf ), λf > 0, and taking into account (11), we can assume that

θs > 1, so we have ∣∣∣∣
1
s

ln B − 1
s

ln C

∣∣∣∣ ≤
1
s

ε

2
≤ ε

2
(14)

From (10) and (14) we have ∣∣∣∣
1
s

ln
‖fs(x + u0)− fs(x)‖

‖u0‖ − λf

∣∣∣∣ < ε (15)

Moreover, for a given l we can choose u0 sufficiently small, such that the above estimation holds for all

s0 ≤ s ≤ s0 + l.

Let zk+1 = f(zk), k = 0, 1, . . . ,M − 1, be a trajectory on A. Define εk = zk − zj(k) where the element

of trajectory zj(k) is the nearest point to zk. Observe that we have limM→∞max0≤k≤M−1 ‖εk‖ = 0.

Assumptions that A is a chaotic attractor and µ is a SRB measure imply that for almost (with respect

to Lebesgue measure) every initial point in the basin of attraction of A, the points zk, when M →∞ are

dense on the unstable manifold (as computer experiment indicates). We write xi ≡ zk and xi+1 ≡ zj(k).

Due to mixing, taking M large we can assume that the vectors xi+1 − xi have random directions and

arbitrarily small lengths. For all xi, we consider

1
s

ln
‖fs(xi+1)− fs(xi)‖

‖xi+1 − xi‖
Now, assuming M is large enough and taking as s(M) a value of s for which (15) is satisfied, we have

∣∣∣∣
1

s(M)
ln
‖fs(M)(xi+1)− fs(M)(xi)‖

‖xi+1 − xi‖ − λf

∣∣∣∣ < ε

for all i. Therefore, ∣∣∣∣∣
1

Ms(M)

M∑

i=1

ln
‖fs(M)(xi+1)− fs(M)(xi)‖

‖xi+1 − xi‖ − λf

∣∣∣∣∣ < ε.

Since ε > 0 can be chosen arbitrary, we have

lim
M→∞

1
Ms(M)

M∑

i=1

ln
‖fs(M)(xi+1)− fs(M)(xi)‖

‖xi+1 − xi‖ = λf . (16)

Define the map f̄ as follows. Let z̄i = mi/N . Note z̄i ≈ zk since P (mi) = xk. We define:

f̄(z̄i) = z̄j ⇔ z̄j =
mj

N
=

F (mi)
N

.

Since P (mj) = xl it follows that f̄(z̄i) = z̄j ≈ zl = f(zk). Therefore, f̄(z̄i) ≈ f(zk). Let zp be the closest

point to zk; we write zp = zk +εk. Clearly z̄i+1 ≈ zk +εk and f̄(z̄i+1) ≈ f(zk +εk). Denote δ = max ‖εk‖.
It is easy to see that as M →∞, N →∞ and δ → 0. Moreover, when N →∞, z̄ approaches z as well as

limN→∞ f̄(z̄) = f(z).
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Now we have

lim
M→∞

lim
N→∞

λ
(s(M))
F = lim

M→∞
lim

N→∞
1

Ms(M)

M−1∑

i=0

ln

∥∥F s(M)(mi+1)− F s(M)(mi)
∥∥

‖mi+1 −mi‖

= lim
M→∞

lim
N→∞

1
Ms(M)

M−1∑

i=0

ln

∥∥f̄s(M)(z̄i+1)− f̄s(M)(z̄i)
∥∥

‖(mi+1 −mi)/N‖

= lim
M→∞

lim
N→∞

1
Ms(M)

M−1∑

i=0

ln

∥∥f̄s(M)(z̄i+1)− f̄s(M)(z̄i)
∥∥

‖z̄i+1 − z̄i‖

= lim
M→∞

1
Ms(M)

M−1∑

k=0

ln

∥∥fs(M)(zk + εk)− fs(M)(zk)
∥∥

‖εk‖
= λf

The last equality follows from (16) and the fact δ → 0 when M → ∞ and the directions εk are random

for large M .

Remark 10: The above theorem holds for arbitrary dimensional maps.

IV. Examples

In this section we present several examples.

A. Tent map

Let us consider the tent map

f(x) =





x
a 0 ≤ x ≤ a

x−1
a−1 a < x ≤ 1,

(17)

where 0 < a < 1 is a parameter and x ∈ [0, 1]. This map is mixing, its invariant measure is the Lebesgue

measure restricted to [0, 1], and the Lyapunov exponent of the map for a typical trajectory is equal to

λf = −a ln a− (1− a) ln(1− a).

For the tent map, the map fM and consequently the map FM can be constructed analytically [15]. One

has:

FM (x) =





1 x = 0

Cl
(

M
A x

)
0 < x ≤ A

Fl
[

M
M−A (M − x)

]
+ 1 A < x ≤ M − 1,

(18)

where Cl(z) and Fl(z) denote the ceiling and the floor of z, respectively, and x ∈ {0, 1, . . . ,M − 1}.
We now present two numerical examples. In the first example we choose a = 0.5. The convergence of

λFM to λf = ln 2 = 0.69315 is shown in the Table I.

For the second example, let M = 128 and A = 35; thus a = A/M = 0.2734. In this case the map F128

has two periodic trajectories with periods 102 and 26, respectively. Their discrete Lyapunov exponents are

0.525 and 0.633, respectively. The discrete Lyapunov exponent for the map F128 is λFM
= 0.547, while the
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M λF | λf − λF |
256 0.69043957438 2.70760617 ×10−3

300 0.69083668995 2.31049060 ×10−3

400 0.69141431260 1.73286795 ×10−3

500 0.69176088619 1.38629436 ×10−3

1000 0.69245403337 6.93147180 ×10−4

1024 0.69247027901 6.76901543 ×10−4

2600 0.69288058549 2.66595069 ×10−4

7224 0.69305122995 9.59506063 ×10−5

22444 0.69311629715 3.08834066 ×10−5

34012 0.69312680107 2.03794889 ×10−5

TABLE I

Values of λF and λf − λF for different M for the tent map with a = 0.5.

Lyapunov exponent of the tent map is λf = 0.5866. The second iteration of G ≡ F128, G2, has four periodic

trajectories with periods 51, 51, 13, and 13, respectively. Their discrete Lyapunov exponents are 1.1744,

1.013, 1.23, and 1.233, respectively. The discrete Lyapunov exponent for the map G2 is λG2 = 1.227,

while the Lyapunov exponent of the second iteration of the tent map is λf2 = 2× 0.5866 = 1.1732. The

third iteration of G, G3, has four periodic trajectories with periods 34, 34, 34, and 26, respectively. Their

discrete Lyapunov exponents are 1.73, 1.72, 1.55, and 1.81, respectively. The discrete Lyapunov exponent

for the map G3 is λG3 = 1.6985, while the Lyapunov exponent of the third iteration of the tent map is

λf3 = 3× 0.5866 = 1.7598. Note that |λFM
− λf | ≈ 0.039, |λG2 − λf2 | ≈ 0.054, and |λG3 − λf3 | ≈ 0.061.

For the continuous case, we have λfn = nλf for all n. However, for the discrete-space systems, only the

relation λF n
M
≈ nλFM holds for a finite n.

B. Logistic map

We now consider the logistic map f(x) = 4x(1 − x) and consider its trajectory z0, z1, . . . , zM−1 of

length M . We define f(zM−1) = z0 and order zj to obtain xj . Let mi = Fl(xiN), where Fl(z) denote

the floor of z and N is chosen such that mi 6= mj for all i and j. Therefore, we consider a set {mi} of

M points, m0 < m1 < . . . < mM−1. On this set the logistic map f induces the permutation F , such that

F (mi) = mj if f(xi) = xj . In general f(zM−1) may not be close to z0, which means that f(zM−1) does

not reflect the original dynamics of the logistic map. Let mk correspond to zM−1, where k 6= 0,M − 2.

By the same argument, F (mk) does not reflect the original dynamics of the logistic map, and therefore

December 20, 2005 DRAFT



18

we compute the discrete Lyapunov exponent using the following expression:

λF =
1

M − 2

(
k−2∑

i=0

ln
d[F (mi+1), F (mi)]

d[mi+1,mi]
+

M−1∑

i=k+1

ln
d[F (mi+1), F (mi)]

d[mi+1, mi]

)
. (19)

For k = M − 2, instead of Eq. (19), one should compute the discrete Lyapunov exponent as:

λF =
1

M − 3

M−4∑

i=0

ln
d[F (mi+1), F (mi)]

d[mi+1, mi]
, (20)

while for k = 0, as

λF =
1

M − 1

M−1∑

i=1

ln
d[F (mi+1), F (mi)]

d[mi+1, mi]
. (21)

Let {0.123, 0.431484, 0.981222, 0.737006, 0.273075, 0.794021, 0.654206, 0.904881} be a trajectory of the

logistic map of length M = 8. Reordering this set, we have

{0.123, 0.273075, 0.431484, 0.654206, 0.737006, 0.794021, 0.904881, 0.981222}.

The logistic map induces the permutation

F : {12, 27, 43, 65, 73, 79, 90, 98} → {12, 27, 43, 65, 73, 79, 90, 98}

with F (12) = 43, F (27) = 79, F (43) = 98, F (65) = 90, F (73) = 27, F (79) = 65, F (98) = 73 and we

define F (90) = 12. Note that m6 = 90 corresponds to z7; therefore, we compute the discrete Lyapunov

exponent using (20):

λF =
ln(36/15) + ln(19/16) + ln(8/22) + ln(63/8) + ln(38/6)

5
= 0.789,

which is close to the Lyapunov exponent of the logistic map λf = ln 2. For M = 16 we compute the

discrete Lyapunov exponent for three different values of N , N = 103, N = 104, and N = 105 and obtain

(averaged over 100 trajectories) 0.628, 0.658, and 0.664, respectively.

The values of the discrete Lyapunov exponent, computed using one of the expressions (19)–(21), are

shown in Table II for different values of M . For each M , the discrete Lyapunov exponent for 1000 different

trajectories is calculated and the average value is presented in Table II.

C. Henon map

Consider the Henon map f : R2 → R2 given with (x, y) → (1 − ax2 + by, x). For a = 1.4, b = 0.3 the

Henon map has a chaotic attractor, for which the largest Lyapunov exponent is λf = 0.4169. The Henon

map induces a permutation of the set {m0,m1, . . . , mM−1} as described in the section III-B. Discrete

Lyapunov exponents λ
(s)
F for different values of s are shown in Table III. It can be seen that for 6 ≤ s ≤ 14,

the values of λ
(s)
F are close to each other and to the actual value λf = 0.4169. Table IV shows λ

(s)
F and

| λ(s)
F − λf | for different values of s and M .

December 20, 2005 DRAFT



19

M λF | λf − λF |
8 0.609286 0.083861

32 0.66912 0.024027

64 0.681690 0.011457

128 0.68743 0.005710

512 0.691484 0.001663

TABLE II

Values of λF and | λf − λF | for different M for the logistic map f(x) = 4x(1− x).

s λs
F s λs

F

1 0.302160 16 0.388738

2 0.365007 17 0.379391

3 0.374142 18 0.367462

4 0.395656 19 0.354218

5 0.393760 20 0.343144

6 0.401879 21 0.328626

7 0.404930 22 0.317969

8 0.407093 23 0.308499

9 0.407391 24 0.292478

10 0.406174 25 0.280957

11 0.403202 26 0.274287

12 0.406164 27 0.263852

13 0.404751 28 0.254212

14 0.405888 29 0.246234

15 0.394061 30 0.239540

TABLE III

Discrete Lyapunov exponent λ
(s)
F of the Henon map for different values of s. The parameters of the map are

a = 1.4 and b = 0.3. The largest Lyapunov exponent for the Henon map is λf = 0.4169.
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M=10.000 M=20.000 M=30.000 M=40.000

s λ
(s)
F | λ(s)

F − λf | λ
(s)
F | λ(s)

F − λf | λ
(s)
F | λ(s)

F − λf | λ
(s)
F | λ(s)

F − λf |
10 0.401692 0.017308 0.408686 0.010314 0.406863 0.012137 0.409812 0.009188

11 0.402144 0.016856 0.409427 0.009573 0.407647 0.011353 0.410702 0.008298

12 0.401663 0.017337 0.409635 0.009365 0.408109 0.010891 0.411237 0.007763

13 0.400057 0.018943 0.409583 0.009417 0.408125 0.010875 0.411412 0.007588

14 0.396502 0.022498 0.408257 0.010743 0.407368 0.011632 0.410965 0.008035

15 0.390822 0.028178 0.405267 0.013733 0.405607 0.013393 0.409723 0.009277

TABLE IV

Discrete Lyapunov exponent λ
(s)
F and the difference | λ(s)

F − λf | for the Henon map for different values of s

and M . The parameters of the map are a = 1.4 and b = 0.3.

D. Coupled logistic maps

We now consider coupled logistic maps

x1t+1 = rx1t(1− x1t) + e(x2t − x1t)

x2t+1 = rx2t(1− x2t) + e(x1t − x2t),

which exhibits hyperchaos for r = 3.7 and e = 0.006. Discrete Lyapunov exponents λ
(s)
F for different

values of s are shown in Table V. Again, as in the case of the Henon map, we see that for 4 ≤ s ≤ 7, the

values of λ
(s)
F are close to each other and the average value is equal to ≈ 0.373305, which is close to the

actual value λf = 0.373484.

V. Discrete chaos

In this section we consider the question: when is a finite phase-space dynamical system discretely

chaotic?

Definition 1: Let FM be a family of permutations (parameterized by M) of the sets {0, 1, . . . ,M − 1}.
We say that FM is a discretely-chaotic family of permutations if limM→∞ λFM > 0.

Remark 11: Sometimes, the concept of discretely chaotic map is applied to a single map F rather than

to a family. In most applications though, F is obtained via phase space discretization and truncation of

the orbits of a continuous map and, therefore, it does belong to a family of maps (generated by f) by

construction. Otherwise, if e.g. F is a permutation on {0, 1, . . . ,M − 1}, the comparison of λF to the

corresponding λFmax can be used to gauge the “distance” from F to Fmax – the permutation on the same

set having the largest discrete Lyapunov exponent.
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s λs
F

1 0.498189

2 0.395201

3 0.407670

4 0.374480

5 0.383502

6 0.364136

7 0.370106

8 0.357860

9 0.362121

10 0.353725

11 0.356582

12 0.346782

13 0.347391

14 0.335135

15 0.331621

TABLE V

Discrete Lyapunov exponent λ
(s)
F of the coupled logistic maps for different values of s. The system has two

positive Lyapunov exponents; the largest Lyapunov exponent is λf = 0.373484.

The set of all permutations of the set {0, 1, . . . , M −1} can be divided into three classes: the class of all

permutations for which limM→∞ λF = 0; the class of all permutations for which 0 < limM→∞ λF < ∞;

and the class of all permutations for which limM→∞ λF = ∞. Examples of such permutations are given

in the section II-B. Since the discrete Lyapunov exponent for the maps F
(i)
M , see Example 1, tends to

zero, when M goes to infinity, the maps are not discretely-chaotic, although for each finite M their

discrete Lyapunov exponent is a positive number. The maps from Examples 2 and 3 are discretely-chaotic

permutations. We stress again that since F is a permutation of the set {0, 1, . . . ,M − 1}, its discrete

Lyapunov exponent is always a nonnegative number, that is λF ≥ 0.

Let now consider the case when F : {0, 1, . . . , M − 1} → {0, 1, . . . , M − 1} is an arbitrary map (not

necessarily 1:1 and/or onto). In this case, the map may have eventually periodic orbits. We say that the

fixed point i is an eventually fixed point for j if there exists n ≥ 1 such that Fn(j) = i.

Definition 2: We say that i is a stable fixed point for the map F if F (i) = i and i is an eventually fixed

point for at least one of its neighbor points i± 1; in other words, when F (i + 1) = i and/or F (i− 1) = i.
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In a similar way, one can define stable periodic orbits.

Example 8: Let F : {0, 1, . . . , 9} → {0, 1, . . . , 9} be the map defined as F (0) = 1, F (1) = 2, F (2) = 8,

F (3) = 6, F (4) = 5, F (5) = 5, F (6) = 5, F (7) = 3, F (8) = 9, and F (9) = 0. This map has one period-5

orbit 0 → 1 → 2 → 8 → 9 → 0, a fixed point 5 → 5, and four points, 3,4,6, and 7, for which the fixed

point 5 is an eventually fixed point: 3 → 6 → 5, 4 → 5, 6 → 5, and 7 → 3 → 6 → 5. 5 is stable fixed

point. The discrete Lyapunov exponent of the period-5 orbit is equal to (ln 6 + ln 9)/5.

Remark 12: If F is a permutation of the set {0, 1, . . . , M − 1}, the discrete Lyapunov exponent is a

non-negative number, that is λF ≥ 0. However, for a map F : {0, 1, . . . , M−1} → {0, 1, . . . ,M−1} which

is not 1:1 and/or onto, the discrete Lyapunov exponent may take the value −∞. For example, the discrete

Lyapunov exponent of the fixed point 5 in the above example is equal to −∞. In order to avoid this value,

if we define ln 0 = 0, then the discrete Lyapunov exponent of the map F is always a non-negative number.

For maps F : {m0,m1, . . . ,mM−1} → {m0,m1, . . . , mM−1} which are not 1:1 and/or onto, the discrete

Lyapunov exponents may take any real value (positive, zero, and negative). For example, for the map

F : {0, 2, 3, 4, 5} → {0, 2, 3, 4, 5} defined as F (0) = 4, F (2) = 5, F (3) = 4, F (4) = 5, and F (5) = 4, its

discrete Lyapunov exponent is equal to − ln 2/5.

Let CM = {c0, c1, . . . , cm} j {0, 1, . . . ,M − 1}. We define ∂CM = {c0 ± 1, c1 ± 1, . . . , cm ± 1} to be

the neighboring set of CM (if c0 = 0 or cm = M − 1, then the neighboring points are 1 and M − 2,

respectively). We say the set C is an invariant set of the map F (or an F -invariant set), if F (C) = C.

Definition 3: We say C is an attractor of the map F , if C is an invariant set of F and there exists

i ∈ ∂C such that F (i) ∈ C.

Let CM be a set invariant under the action of the map FM such that the map FM restricted to the set

CM is a bijection. Let us write GM for the map FM restricted to the set CM .

Definition 4: We say that a family of maps FM is discretely chaotic on the sets CM , if limM→∞ λGM > 0.

Example 9: Let L ≥ 14 be an even number and M = L + 12. We define FM : {0, 1, . . . , M − 1} →
{0, 1, . . . ,M − 1} as

FM (x) =





x if x ≤ 5

k if x ≥ 6 and x = 2k k = 6, 7, . . . L
2 − 1,

L
2 + k if x ≥ 6 and x = 2k + 1 k = 6, 7, . . . L

2 − 1

x if x ≥ L.

The set CL = {6, 7, . . . L−1} is invariant under the map FM . Let λCL
be the discrete Lyapunov exponent

of the map FM restricted to the set CL. Since limL→∞ λCL > 0, it follows that the family of maps FM is

discretely chaotic on the sets CL.

Definition 5: Let FM be a family of maps. We say that the FM -invariant sets CM define discretely

chaotic attractors for the maps FM if the set CM is an attractor of FM for each M and limM→∞ λGM
> 0.

Example 10: Let L ≥ 14 be an even number and M = L + 12. We define FM : {0, 1, . . . , M − 1} →
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{0, 1, . . . ,M − 1} as

FM (x) =





L
2 if x ≤ 5

k if x ≥ 6 and x = 2k k = 6, 7, . . . L
2 − 1,

L
2 + k if x ≥ 6 and x = 2k + 1 k = 6, 7, . . . L

2 − 1
L
2 if x ≥ L.

The sets CL = {6, 7, . . . L− 1} build a family of discretely chaotic attractors for the maps FM .

Let

C = {FM|FM is a bijection and FM 6= Id},

where Id denotes the identity, be the set of all bijections different from the identity. It is clear that for

all FM ∈ C, the discrete Lyapunov exponent of FM (defined with Eq. (2)) is always a positive number.

This also reflects the fact that all periodic orbits of FM are unstable (we say that the orbit is unstable

if it is not stable). The existence of the horseshoe is a fingerprint of chaos in continuous-space systems.

In discrete-space systems, however, the existence of a set, on which FM is 1:1 and onto, and for which all

periodic orbits are unstable, is a fingerprint of discrete chaos.

VI. Conclusions

We have suggested an answer to the question “What is chaos in finite phase-space dynamical systems?”

by proposing definitions of discrete Lyapunov exponent and discrete chaos. The main results of our paper

can be summarized as follows:

• We propose a generalization of the largest Lyapunov exponent for permutations defined on (arbitrary)

finite lattices. As its continuous counterpart, the discrete Lyapunov exponent measures the local (between

neighboring points) average spreading of the discrete-time discrete-space dynamical system considered.

• We show, in the special case when the permutation is an approximation of a chaotic map, that the

discrete Lyapunov exponent and its continuous counterpart are close to each other. More precisely, let

M be the cardinality of the discrete phase-space. We prove that, for large classes of chaotic maps, the

corresponding discrete Lyapunov exponent approaches the largest Lyapunov exponent of a chaotic map

when M →∞.

• We propose a definition of discrete chaos using similar tools as for (classical) chaos. We define discrete

chaos in terms of the discrete-space Lyapunov exponent in a similar way as for continuous-space systems:

the system (consisting of a map on a set of M elements) is said to be discretely chaotic if its discrete

Lyapunov exponent approaches a positive number (or +∞) when M →∞.

Discrete chaos plays an important role in numerical computation, cryptography, digital electronics and

communications and, potentially, whenever a complex continuous phenomenon is implemented on a finite-

state machine. In a forthcoming paper, “Discrete chaos part II: Applications,” we will report on some of

them, especially those related to cryptography and secure communications. Rather than insisting here on
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the relevance of any of the aforementioned applications, we will just give a flavor of one we are currently

exploring. In most modern block ciphers including both the former and current standards for commercial

encryption DES and AES, the confusion-diffusion strategy proposed by Shannon is implemented, roughly

speaking, by means of bit permutations with strong nonlinearity (S-boxes) on subblocks of the input

block and permutations with fast spreading factor on whole blocks, respectively. This being the case,

the security of all these ciphers relies ultimately on such permutations delivering the right mixing and

propagation properties. Here is where discrete chaos comes in: it provides tools like Lyapunov exponent

and others being developed to quantify the said properties. The design and certification of special-purpose

permutations is just an example of possible and interesting applications of discrete chaos to cryptography.

Others include the design of cryptographic algorithms, hash functions and the like – a new and exciting

research area.
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Appendix A

Let M = 2m be an even number. We define the permutation Fmax of the set {0, 1, 2, . . . , M − 1} as

follows:

Fmax(x) =





m + k if x = 2k k = 0, 1, . . . m− 1,

k if x = 2k + 1 k = 0, 1, . . . m− 1.

We prove in this appendix the Theorem 2: For any permutation F of the set {0, 1, 2, . . . , M − 1} we have

λF ≤ λFmax , where λFmax is given with Eq. (5).

Lemma 5: For any permutation F of the set {0, 1, 2, . . . , M − 1} we have

M−2∑

i=0

| ai+1 − ai |≤ M2

2
− 1.

Proof: Let us notice that by definition of absolute value in the sum
∑M−2

i=0 | ai+1 − ai | there are

M − 1 terms of ai (each of them can occur two times) with positive sign, and M − 1 terms of ai with

negative sign. So, this sum is maximal when with positive sign there are the large ai ( two times) and with

negative sign there are the small ai. Thus, we have for any permutation F the inequality (the bound):

M−2∑

i=0

| ai+1 − ai |≤ 2[M + (M − 1) . . . (M/2 + 2)] + (M/2 + 1)−M/2− 2[(M/2− 1) + . . . 1] =
M2

2
− 1.

Lemma 6: For the permutation Fmax we have

M−2∑

i=0

| ai+1 − ai |= M2

2
− 1.

Proof: By definition of Fmax it follows

M−2∑

i=0

| ai+1 − ai |= m2 + (m− 1)(m + 1) =
M2

2
− 1.

From Lemmas 5 and 6 we have

Lemma 7: The maximum value of the sum
∑M−2

i=0 | ai+1 − ai | is reached by the permutation Fmax.

We now prove the Theorem 2. Let us consider the discrete Lyapunov exponent

λFmax =
M−2∑

i=0

1
M

ln | ai+1 − ai | + 1
M

ln m,

which can be rewritten as

λFmax =
M − 1

M

M−2∑

i=0

1
M − 1

ln
| ai+1 − ai |∑M−2

i=0 | ai+1 − ai |
+

1
M

ln m + ln
M−2∑

i=0

| ai+1 − ai | .

From the last expression and the Lemma 7 to prove the theorem, it is enough to show that the sum

M−2∑

i=0

1
M − 1

ln
| ai+1 − ai |∑M−2

i=0 | ai+1 − ai |
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is maximal for the permutation Fmax as well.

Denote

qi =
| ai+1 − ai |∑M−2

i=0 | ai+1 − ai |
.

Thus
∑n−2

i=0 qi = 1. By Lemma 1.4.1 (page 16 in [17]) for any positive numbers pi and qi satisfying
∑M−2

i=0 pi = 1 and
∑M−2

i=0 qi = 1, we have

M−2∑

i=0

pi ln pi ≥
M−2∑

i=0

pi ln qi.

Thus, the expression
∑M−2

i=0 pi ln qi is the largest when the terms qi are close to pi (due to continuity of
∑M−2

i=0 pi ln pi with respect to pi) what in our case means that qi should be close to 1/(M − 1). For the

permutation Fmax we have just such situation, since

qi =
M/2

M2/2− 1
and

M/2 + 1
M2/2− 1

,

we have ∣∣∣∣qi − 1
M − 1

∣∣∣∣ =
1
2

M − 2
M − 1

1
M2/2− 1

and
∣∣∣∣qi − 1

M − 1

∣∣∣∣ =
1
2

M

M − 1
1

M2/2− 1
.

Thus, we have that the distance of all qi to the terms of the uniform distribution, i.e. to 1/(M − 1) is a

fraction of 1/(M2/2− 1) and by lemma 5 the value M2/2− 1 is the maximum value of the denominator

in qi that can be reached by any permutation. This proves the theorem.

Appendix B

λ
(s)
F =

1
Ms

M−1∑

i=0

ln
d[F s(mi+1), F s(mi)]

d[(mi+1), (mi)]

=
1

Ms

M−1∑

i=0

ln
d[F s(mi+1), F s(mi)]

d[F s−1(mi+1), F s−1(mi)]
d[F s−1(mi+1), F s−1(mi)]
d[F s−2(mi+1), F s−2(mi)]

. . .
d[F 1(mi+1), F 1(mi)]
d[F 0(mi+1), F 0(mi)]

=
1

Ms

M−1∑

i=0

s∑

k=1

ln
d[F k(mi+1), F k(mi)]

d[F k−1(mi+1), F k−1(mi)]
.
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