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Stability of systems of linear equations and
inequalities: Distance to ill-posedness and

metric regularity∗

M.J. Cánovas† F.J. Gómez-Senent† J. Parra†

Abstract

In this paper we consider the parameter space of all the linear systems,
in the n-dimensional Euclidean space, with arbitrarily many (possibly in-
finite) inequalities and a finite amount of equations. This parameter space
is endowed with the topology of the uniform convergence of the coefficient
vectors by means of an extended distance. Our focus is on the stability
of the nominal system in terms of whether or not proximal systems pre-
serve consistency/inconsistency. We pay special attention to the different
frameworks coming from either splitting each equation into two inequal-
ities, or treating equations as equations. The notable differences arising
in the latter setting with respect to the former are emphasized in the
paper. Ill-posedness is identified with the boundary of the set of consis-
tent systems and a formula for the distance to ill-posedness is obtained.
This formula is applied to derive the modulus of metric regularity of a
set-valued mapping describing homogeneous systems.

Key words. Stability, well-posedness, linear systems, distance to
ill-posedness, metric regularity.
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1 Introduction
In this paper we are concerned with the stability of the linear system (with
inequality and equality constraints), in Rn,

σ := {a0tx ≥ bt, t ∈ T ; a0sx = bs, s ∈ S} , (1)

where T ∩ S = ∅, T is an arbitrary index set, the functions t 7→ at ∈ Rn and
t 7→ bt ∈ R are also arbitrary, S is a finite non-empty set whose cardinal is
m ≤ n, and as ∈ Rn, bs ∈ R, for s ∈ S. Here the vectors in Rn are regarded as
∗This research has been partially supported by grants BFM2002-04114-C02-02 from MEC

(Spain) and FEDER (E.U.), and GV04B-648 and GRUPOS04/79 from Generalitat Valenciana
(Spain).

†Operations Research Center, Miguel Hernández University of Elche, 03202 Elche (Ali-
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column-vectors and y0 denotes the transpose of y ∈ Rn.When T is infinite, σ is
a linear semi-infinite system.
There exist several papers (see, e.g., [3], [4], [11], [13] and [14]) dealing with

the stability and well/ill-posedness of linear inequality systems in this semi-
infinite context (T arbitrary), but including no equality constraints in the model
(i.e., S = ∅ in (1)). Although it is well-known that any equation may be split
into two inequalities, we will show in this paper that the stability theory in both
settings (equations and inequalities, or inequalities only) presents substantial
differences. To start with, it is immediate that in the context of inequalities
only, the two ones, a0x ≥ b and −a0x ≥ −b, coming from splitting a0x = b may
be perturbed as a0x ≥ b+ε and −a0x ≥ −b+ε, with ε > 0, yielding inconsistency
(infeasibility). On the other hand, it is obvious that small perturbations of the
equation a0x = b, with a 6= 0n (the zero vector of Rn), give rise to new consistent
equations.
The papers referred above approach the stability of linear inequality sys-

tems (S = ∅) through continuity properties of the feasible set mapping, among
other stability criteria. The paper [3] also tackles the stability of the linear
semi-infinite optimization problem constrained by such an inequality system.
An immediate antecedent to these papers may be found in [1] and [8], which
deal with the continuous case, where T is a compact Hausdorff space and at
and bt depend continuously on t ∈ T. The general case (T, a (·) and b (·) arbi-
trary) may give rise to certain pathologies with respect to stability which do
not occur in the continuous case, as we will show later on in relation to subsets
Θ∞ and Ω∞ (see Section 2). In [10] the authors analyze the effect that certain
specific perturbations provoke on the optimal value of linear semi-infinite pro-
gramming problems constrained by systems of linear equations and inequalities.
Specifically, the authors consider perturbations of either the coefficients of the
objective function, or the right hand side of the constraints. In both cases the
left hand side of the constraint system remains fixed.
There are, spread out in the literature, many contributions to the stability

theory of the feasible set for a class of semi-infinite systems structurally richer
than our linear inequality systems (T arbitrary). This class is formed by those
systems whose index set T is a compact set in the Euclidean space, defined as
solution set of finitely many analytic constraints, and the coefficient functions
a (·) and b (·) are assumed to belong to C1 (T ) . Obviously, this class of C1-
systems is a subclass of continuous systems. Under suitable hypotheses, [18]
(see also [17]) characterizes the topological stability of the feasible set in terms
of the Mangasarian-Fromovitz constraint qualification (MFCQ, for short). In
this semi-infinite context (with C1 data), the equivalence between the MFCQ
and the metric regularity of the constraints has been established in [15]. More
references in relation to metric regularity are given in Section 5.
Other contributions to the stability and well/ill-posedness for linearly con-

strained systems can be found in the context of conic linear systems (see, e.g.,
[9], [22] and [23], among others). This context includes our constraint system
(1) when T is finite. Unfortunately, when T is infinite and arbitrary the tools
developed in [9] and [23] do not apply in our context, in which the parameter
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space is not a normed space.
In the following paragraphs we go deeply in the description of our model.

Associated to σ, we consider the linear inequality system, in Rn :

θσ := {a0tx ≥ bt, t ∈ T ; a0sx ≥ bs, − a0sx ≥ −bs, s ∈ S} . (2)

The parameter space of all the linear systems in the form (1) will be denoted
by Ω, while Θ will represent the set of linear inequality systems indexed as θσ;
i.e., Θ coincides with the set of systems in the form:

θ := {a0tx ≥ bt, t ∈ T ; a0s1x ≥ bs1, a
0
s2x ≥ bs2, s ∈ S} . (3)

In this way, there exists a natural bijection (a isometry, indeed) between Ω
and the subset of Θ formed by all the systems in the form (2). Note that Θ may

be identified with (Rn ×R)T , where

T := T ∪ (S × {1, 2}) , (4)

and for the sake of brevity the system θ in (3) will be alternatively written
in the form

©
a0tx ≥ bt, t ∈ T

ª
. The subset of Ω (respectively, Θ) formed by

all the consistent systems will be denoted by Ωc (respectively, Θc), while Ωi
and Θi represent the corresponding subsets of Ω and Θ formed by all the in-
consistent systems. According to [13], we distinguish two subsets in Θi, which
constitute a partition of it: Θs, the set of strongly inconsistent systems (i.e.,
those systems having an inconsistent finite subsystem), and Θw := Θi\Θs, the
set of weakly inconsistent systems. Ωs and Ωw are defined in analogous way.
When different systems are considered in Ω (respectively, in Θ), they and their
associated elements will be distinguished by means of sub(super)scripts or by
means of accents. So, for example, if σ1 and eσ also belong to Ω, we write
σ1 := {

¡
a1t
¢0
x ≥ b1t , t ∈ T ;

¡
a1s
¢0
x = b1s, s ∈ S} and eσ := {ea0tx ≥ ebt , t ∈ T ;ea0sx = ebs, s ∈ S}.

We consider Ω and Θ endowed with the topology of the uniform convergence
of the coefficient vectors, via the respective extended distances dΩ : Ω × Ω →
[0,+∞] and dΘ : Θ×Θ→ [0,+∞] given by:

dΩ (σ1, σ) := sup
t∈T∪S

°°°°µa1tb1t
¶
−
µ
at
bt

¶°°°° ; dΘ (θ1, θ) := sup
t∈T

°°°°µa1tb1t
¶
−
µ
at
bt

¶°°°° ,
where k·k is any given norm in Rn+1. When it is clear from the context, we will
denote both, dΩ and dΘ, by d. Observe that the topology on Ω and Θ does not
depend on the norm k·k under consideration.
Given σ ∈ Ω and eΩ ⊂ Ω, we will write:

d(σ, eΩ) := inf nd (σ, σ̃) , σ̃ ∈ eΩo ∈ [0,+∞]
where, as usual, d (σ,∅) = +∞. The analogous definition can be given for
d(θ, eΘ), with θ ∈ Θ and eΘ ⊂ Θ.
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At this moment, we advance the following notation: if X is a subset of any
topological space, int(X), cl(X), ext (X) (:= XÂcl(X)) and bd(X) will denote
the interior, the closure, the exterior, and the boundary of X, respectively.
The stability theory for linear inequality systems as {a0tx ≥ bt, t ∈ T} , with

T arbitrary, is partially gathered in [12, Chapter 6] (see also references above).
Theorem 6.1 in [12] (see also Theorem 3.1 in [13] and Theorem 3.1 in [11])
establishes in this setting (S = ∅) that condition ‘θ ∈ int (Θc)’ is equivalent to
different stability criteria spread out in the literature (see, e.g., [18], [24] and
[26]). The paper [5] tackles the stability of systems in Θ from a quantitative
point of view. It measures the distance from any given system θ ∈ Θ to bd (Θc);
so, for instance, starting from θ ∈ int (Θc) , the supremum of the radii of the
balls centered at θ and contained in Θc is calculated. The referred distance is
called there distance to ill-posedness, following the terminology introduced by
Renegar in [22] (see § 1 in [9] for additional comments).
Now we refer to the structure of the paper. In Section 2 we provide some

notation and preliminary results, taken from the context of linear inequalities
and adapted to (1). Section 3 approaches the stability of systems (1) with
respect to consistency/inconsistency, providing interiority and boundary char-
acterizations, which are synthesized in Theorem 4 and proved along the section.
In Section 3 we also investigate to what extent stability in Ω is induced by
stability in Θ via the strategy of splitting equations into inequalities. This is
done in §3.1. In §3.2 we analyze the specifics of systems of equations and in-
equalities which require ad hoc techniques. Roughly speaking, we can say that
well-posedness for inconsistent systems in Ω and in Θ is quite similar; but this
is no longer the case for consistent systems, where the role played in Θ by the
convex sets C and H (defined in (6)) is now developed by the (in general ) non-
convex sets E and G (see (8) and (9)). In section 4 we provide a formula for the
distance to ill-posedness (distance to consistency/inconsistency). This formula,
with clear geometrical features, expresses the referred distance, in the infinite-
dimensional (if T is infinite) space Ω, in terms of the distance from the origin to
bd (G) ⊂ Rn+1. At the end of Section 4 (in §4.1) we apply Theorems 1 and 2 in
[9] to derive, in the case in which T is finite and σ is consistent, the distance to
ill-posedness as the optimal value of a mathematical program. Finally, Section
5 applies Theorem 9 (in Section 4) to determine the radius of metric regularity
of a set-valued mapping describing homogeneous linear inequality and equality
systems. In this way we extend to systems of linear equations and inequalities
the corresponding result for inequality systems given in [2, Section 3].

2 Preliminaries
In this section we collect the necessary notation, definitions and results that will
be used later on. Given ∅ 6= X ⊂ Rk, by conv(X), cone(X), and span(X), we
denote the convex hull of X, the conical convex hull of X, and the linear hull
of X, respectively. It is assumed that cone (X) always contains the zero-vector,
0k, and so cone(∅) = {0k}.
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The open unit ball for the norm k·k is represented by B. The dual norm of
k·k is denoted by k·k∗; i.e., for u ∈ Rk,

kuk∗ := max {u0z | kzk ≤ 1} .

Sequences are usually indexed by r ∈ N, and limr should be interpreted as
limr→+∞.
[12, Theorem 4.4] characterizes, in the context of inequality systems (3),

those systems in Θc, Θw and Θs in terms of the so called second moment cone
and characteristic cone associated to θ. As a counterpart the following convex
cones, N and K, associated with the system (1) allow us to characterize, in
Theorem 1, the systems belonging to Ωc, Ωw and Ωs :

N := cone

µ½µ
at
bt

¶
, t ∈ T

¾¶
+ span

µ½µ
as
bs

¶
, s ∈ S

¾¶
= cone

µ½µ
at
bt

¶
, t ∈ T ;

µ
as
bs

¶
, s ∈ S;

µ
−as
−bs

¶
, s ∈ S

¾¶
.

K := N +R+
µ
0n
−1

¶
.

Here N coincides with the second moment cone of the system θσ associated
to σ, and K coincides with its characteristic cone. Indeed, when σ ∈ Ωc, cl (K)
is sometimes referred to as the consequent relations cone of σ (or θσ). Specif-
ically, the so-called (non-homogeneous) Farkas Lemma ([27]) characterizes the
linear inequalities a0x ≥ b which are consequences of the system σ ∈ Ωc (i.e.,
inequalities which are satisfied at every feasible point of σ) as those satisfying¡
a
b

¢
∈ cl (K) .

If we introduce the cone R(T )+ of all the functions λ : T → R+ taking pos-
itive values only at finitely many points of T ,

¡
a
b

¢
∈ cl (K) is equivalent to the

existence of sequences {λr} ⊂ R(T )+ , {µr} ⊂ RS and {γr} ⊂ R+, such thatµ
a

b

¶
= limr

(X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶
+ γr

µ
0n
−1

¶)
.

Theorem 1 Given σ ∈ Ω, and its associated θσ ∈ Θ, the following propositions
hold :

(i) σ ∈ Ωc if and only if θσ ∈ Θc, or equivalently
µ
0n
1

¶
/∈ cl (N) ;

(ii) σ ∈ Ωw if and only if θσ ∈ Θw, or equivalently
µ
0n
1

¶
∈ cl (N) \N ;

(iii) σ ∈ Ωs if and only if θσ ∈ Θs, or equivalently
µ
0n
1

¶
∈ N.

Furthermore, N can be replaced by K in the statements above.

Proof. The classification of θσ in terms of N (or K) can be traced out, for
instance, from [12, Theorem 4.4] (see also [27]). The rest of the statement of
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the theorem is immediate. Just observe that if {a0tx ≥ bt, t ∈ bT ; a0sx ≥ bs,

s ∈ bS; −a0sx ≥ −bs, s ∈ eS} is an inconsistent finite subsystem of θσ, then
{a0tx ≥ bt, t ∈ bT ; a0sx ≥ bs, −a0sx ≥ −bs, s ∈ bS ∪ eS} is an inconsistent finite
subsystem of σ.
In this paper we are interested in determining the distance to ill-posedness

d (σ, bd (Ωc)) for σ ∈ Ω, emphasizing the differences and similarities with d(θσ,
bd (Θc)), and in general with d (θ, bd (Θc)) for θ ∈ Θ. The following remark
points out that our parameter space Ω locally behaves as a normed space, despite
the fact that some distances may be infinite when T is infinite.

Remark 1 Given ∅ 6= eΩ $ Ω and σ /∈ eΩ, one has d(σ, eΩ) = d(σ, bd(eΩ)). In
particular, if σ ∈ Ωi then d (σ,Ωc) = d (σ, bd (Ωc)) .

Note that this result is not true in general for metric spaces. Just consider
X :=

©
1
n | n ∈ N

ª
∪ {0} with the usual metric in R, and eX =

©
1
2n | n ∈ N

ª
.

Then d(1, eX) = 1
2 < 1 = d(1, bd( eX)), since bd( eX) = {0} .

Now we consider the following sets:

Θ∞ : = {θ ∈ Θ | dΘ (θ, bd (Θc)) = +∞} ,
Ω∞ : = {σ ∈ Ω | dΩ (σ, bd (Ωc)) = +∞} .

Remark 2 Observe that Θ∞ and Ω∞ are formed by inconsistent systems, be-
cause any consistent system may be turned into an inconsistent one by means
of a finite perturbation. Just replace an arbitrarily chosen inequality or equality
by ‘00nx ≥ 1’ or ‘00nx = 1’, respectively. Then the previous remark yields

Θ∞ ⊂ int (Θi) and Ω∞ ⊂ int (Ωi) .

The set Θ∞ may be characterized as follows (see [5, Proposition 1]), recalling
the notation of (3) and (4).

Proposition 1 A given system θ ∈ Θ belongs to Θ∞ if and only if there exists

a sequence {λr} ⊂ R(T)+ such thatµ
0n
1

¶
= limr

X
t∈T

λrt

µ
at
bt

¶
with limr

X
t∈T

λrt = 0.

The following result informs about the topological structure of Θ\Θ∞.

Theorem 2 [5, Theorem 5] Given θ ∈ Θ\Θ∞, one has
(i) θ ∈ int (Θi) if and only if θ ∈ int (Θs) ;
(ii) θ ∈ int (Θc) if and only if θ ∈ ext (Θs) ;
(iii) θ ∈ bd (Θc) if and only if θ ∈ bd (Θs) .

Condition (iii) in this theorem motivates the fact that, in [5], bd (Θs) is
referred to as generalized ill-posedness, since it still constitutes a concept of ill-
posedness in Θ∞ : arbitrarily small perturbations of θ ∈ Θ∞∩bd (Θs) may yield
both, systems in Θs and systems in Θw.
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The following theorem gathers some results traced out from [5] which de-
scribe the (generalized) well/ill-posedness of θ ∈ Θ, as well as the associated
distance to ill-posedness in terms of the system’s data. In this theorem we
appeal to the so-called hypographical set associated to θ ∈ Θ, defined by

H (θ) := C (θ) +R+
µ
0n
−1

¶
, where C (θ) := conv

µ½µ
at
bt

¶
, t ∈ T

¾¶
, (5)

where we make use again of the notation (3) and (4).

Theorem 3 [5, Theorems 4 and 6] Let θ ∈ Θ. Then, the following statements
hold:
(i) θ ∈ int (Θs) if and only if 0n+1 ∈ int (H (θ)) ;
(ii) θ ∈ ext (Θs) if and only if 0n+1 ∈ ext (H (θ)) ;
(iii) θ ∈ bd (Θs) if and only if 0n+1 ∈ bd (H (θ)) ;
(iv) dΘ (θ, bd (Θs)) = d (0n+1, bd (H (θ))) .

Note that the left hand side in (iv) is a distance in the parameter space Θ
(infinite-dimensional if T is infinite), whereas the right hand side is a distance
in Rn+1.

3 Stability of systems of linear equations and
inequalities

In this section our aim is to analyze the stability of σ ∈ Ω in terms of its
coefficient vectors. Specifically, characterizations for conditions ‘σ ∈ int (Ωc)’,
‘σ ∈ bd (Ωc)’, and consequently for ‘σ ∈ int (Ωi)’, among others, are obtained,
illustrating the structure of the parameter space Ω in relation to stability from
the point of view of consistency/inconsistency. Some properties of σ ∈ Ω may
be derived through the strategy of splitting each equation into two inequalities.
In other words, there exists a direct relationship between some properties of σ
and their counterparts for θσ, as we formalize in §3.1. Other properties will
need ad hoc techniques, and they are gathered in §3.2.
Next, we synthesize the main results of the present section in the following

theorem, which clarifies the topological structure of Ω\Ω∞ in relation to con-
sistency (recall that Ω∞ ⊂ int (Ωi)). Before that, we introduce the necessary
ingredients. From now on, in order to simplify the notation, given σ ∈ Ω we
shall denote

H := H (θσ) and C := C (θσ) . (6)

Note that, under our general assumption S 6= ∅, set C is given by

C =

(X
t∈T

λt

µ
at
bt

¶
+
X
s∈S

µs

µ
as
bs

¶¯̄̄̄
¯ λ ∈ R(T )+ , µ ∈ RS ,

X
t∈T

λt +
X
s∈S

|µs| ≤ 1
)
.

(7)
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This expression can easily be derived from the fact that 0n+1 ∈ C (due to the
presence of equations) and the convexity of C. Analyzing the stability of σ ∈ Ω
will require as additional ingredients the following sets:

E :=

(X
t∈T

λt

µ
at
bt

¶
+
X
s∈S

µs

µ
as
bs

¶¯̄̄̄
¯ λ ∈ R(T )+ , µ ∈ RS ,

X
t∈T

λt +
X
s∈S

|µs| = 1
)
(8)

and

G := E +R+
µ
0n
−1

¶
. (9)

Theorem 4 Let σ ∈ Ω\Ω∞. Then the following statements hold:
(i) σ ∈ int (Ωi) if and only if σ ∈ int (Ωs) , or equivalently

0n+1 ∈ int (H) ;

(ii) σ ∈ int (Ωc) if and only if σ ∈ ext (Ωs) , or equivalently

0n+1 ∈ bd (H) \bd (G) ;

(iii) σ ∈ bd (Ωc) if and only if σ ∈ bd (Ωs) , or equivalently

0n+1 ∈ bd (H) ∩ bd (G) .

Proof. (i) comes from Theorem 3 and Corollary 2, (iii) gathers Theorems 6
and 8, and (ii) is a straightforward consequence of (i) and (iii).
The previous theorem provides the counterpart of Theorems 2 and 3 for

linear systems in presence of equations. Observe that the situation concerning
Theorem 3 does not exhibit such an exact analogy as with Theorem 2. To start
with, note that the presence of equations entails always 0n+1 ∈ H.
Next we provide two examples in order to illustrate these discrepancies. Ex-

ample 1 shows that condition (i) in Theorem 3, which admits a direct translation
in Ω\Ω∞ (Theorem 4(i)), cannot be extended to Ω∞. Example 2 provides a sys-
tem in int (Ωc) , and then with 0n+1 ∈ bd (H) \bd (G) , which will be used later
on to illustrate some of the main results of the paper.

Example 1 Consider the system, in R, σ = {x ≥ t, t ∈ N; 0x = 1} ∈ Ω∞,
which obviously satisfies 0n+1 ∈ bd (H) . The reader can check that σ ∈ int (Ωs) ,
since

¡
0
1

¢
∈ N1 (see Theorem 1) for any σ1 ∈ Ω such that d (σ1, σ) < 1 (with

respect to the supremum norm in R2). Specifically, two cases arise: if the
coefficient of x in the perturbed equation is non-zero, then

¡
0
1

¢
∈ int (N1) ;

and if this coefficient is zero, then the perturbed equation is 0x = ρ with
ρ > 0. On the other hand, θσ /∈ int (Θs) , since the perturbed systems θε =
{x ≥ t, t ∈ N; εx ≥ 1, εx ≥ −1} , with ε > 0, belong to Θw.

Example 2 Consider the system, in R2, σ = {x1 + x2 ≥ 0, x1 − x2 ≥ 0; x2 =
0}. It is evident that 0n+1 ∈ bd (H) (yielding θσ ∈ bd (Θc) according to Theo-
rems 2 and 3) and the reader can easily check, by means of direct arguments,
that σ ∈ int (Ωc) . Figure 1 below illustrates sets C, E, H and G in this example
and shows that, in general, bd (G) 6⊂ bd (H) .
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y2 

y1 

y3 

G 
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y2 

y1 

y3 

H 
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(1,-1,0)’ (1,1,0)’ 

(0,1,0)
’

(0,-1,0)’ 

Figure 1: Illustration of Example 2

We will return later to this example in order to calculate d (σ, bd (Ωc)) . At
this moment we emphasize the fact that, under the assumption S 6= ∅, sets E
and G are, in general, nonconvex.

3.1 Stability via splitting equations into inequalities

The following result yields in particular the equivalence between ‘σ ∈ int (Ωi)’
and ‘θσ ∈ int (Θi)’. As Example 2 shows, the counterpart for consistent systems
does not hold.

Theorem 5 Let σ = {a0tx ≥ bt, t ∈ T ; a0sx = bs, s ∈ S} ∈ Ω, and consider the
associated θσ ∈ Θ. Then we have

dΩ (σ,Ωc) = dΘ (θσ,Θc) .

Proof. Let us start with the inequality d (σ,Ωc) ≥ d (θσ,Θc) , assuming the
non-trivial case d (σ,Ωc) < +∞. Take a sequence {σr} ⊂ Ωc such that d (σ,Ωc) =
limrd (σ, σr) . Since, for all r ∈ N, we have θσr ∈ Θc and d (θσ, θσr) = d (σ, σr),
the aimed inequality holds.
Now let us see that d (σ,Ωc) ≤ d (θσ,Θc) , now under the non-trivial case

d (θσ,Θc) < +∞. Consider a sequence {θr} ⊂ Θc such that d (θσ,Θc) =
limr d (θσ, θr) . We will construct an appropriate {σr} ⊂ Ωc. Write, for each
r ∈ N,

θr :=
©
(art )

0
x ≥ brt , t ∈ T ; (ars1)

0
x ≥ brs1, (a

r
s2)

0
x ≥ brs2, s ∈ S

ª
,

and take feasible points xr for every θr. Then we have, for each s ∈ S,

a0sx
r + (ars1 − as)

0 xr − bs − (brs1 − bs) ≥ 0,

a0sx
r − (ars2 + as)

0 xr − bs + (b
r
s2 + bs) ≤ 0.
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Therefore, for each r and each s, there exists αrs ∈ [0, 1] such that

αrs
£
a0sx

r + (ars1 − as)
0 xr − bs − (brs1 − bs)

¤
+

+(1− αrs)
£
a0sx

r − (ars2 + as)
0 xr − bs + (b

r
s2 + bs)

¤
= 0.

In other words, for all r we conclude that xr is also a feasible point of the system

σr :=
©
(art )

0 x ≥ brt , t ∈ T ; (ars)
0 x = brs, s ∈ S

ª
where

ars := as + αrs (a
r
s1 − as) + (1− αrs) (−ars2 − as) ,

brs := bs + αrs (b
r
s1 − bs) + (1− αrs) (−brs2 − bs) .

Moreover, for all r we have

d (σ, σr) ≤ d (θσ, θr)

due to the facts

sup
t∈T

°°°°µatbt
¶
−
µ
art
brt

¶°°°° ≤ d (θσ, θr) ,

and

max
s∈S

°°°°µasbs
¶
−
µ
ars
brs

¶°°°° ≤ max
s∈S

½
αrs

°°°°µars1 − as
brs1 − bs

¶°°°°+ (1− αrs)

°°°°µars2 + as
brs2 + bs

¶°°°°¾
≤ αrsd (θσ, θr) + (1− αrs) d (θσ, θr) = d (θσ, θr) .

In this way, d (σ,Ωc) ≤ lim infr d (σ, σr) ≤ limr d (θσ, θr) = d (θσ,Θc) .

Corollary 1 Let σ ∈ Ω and consider the associated θσ ∈ Θ. Then the following
statements hold:
(i) σ ∈ cl (Ωc) if and only if θσ ∈ cl (Θc) ;
(ii) σ ∈ Ω∞ if and only if θσ ∈ Θ∞.

Proof. (i) come straightforwardly from Theorem 5. For (ii) take also Remark
1 into account.

Corollary 2 Let σ ∈ Ω\Ω∞. The following conditions are equivalent:
(i) σ ∈ int (Ωi) ;
(ii) θσ ∈ int (Θi) ;
(iii) θσ ∈ int (Θs) ;
(iv) σ ∈ int (Ωs) .

Proof. (i)⇔(ii) comes straightforwardly from statement (i) in the previous
corollary. Theorem 2 yields (ii)⇔(iii). (iii)⇒(iv) is immediate as far as small
perturbations of σ in Ω can be viewed as particular small perturbations of θσ
in Θ. Finally, (iv)⇒(i) is trivial.

10



Corollary 3 The following conditions hold :
(i) int (Ωi) = Ω∞ ∪ int (Ωs) ;
(ii) Given σ ∈ Ω, one has σ ∈ Ω∞ if and only if there exists {λr} ⊂ R(T )+

such that µ
0n
1

¶
= limr

X
t∈T

λrt

µ
at
bt

¶
with limr

X
t∈T

λrt = 0. (10)

Hence, σ ∈ int (Ωi) if and only if either 0n+1 ∈ int (H) or (10) holds for some
{λr} ⊂ R(T )+ .

Proof. (i) is a straightforward consequence of the previous corollary together
with Remark 2. (ii) comes from Corollary 1 and Proposition 1, taking into
account that we can remove the finite (and hence bounded) set {

¡
as
bs

¢
, s ∈ S}

from the expression of
¡
0n
1

¢
in that proposition because there we have

P
s∈S λ

r
s →

0 as r→∞.

3.2 Specifics in presence of equations

The strategy of splitting equations into inequalities has allowed us to charac-
terize ‘σ ∈ cl (Ωc)’ in terms of the system’s data, but this strategy gives no
information about whether ‘σ ∈ int (Ωc)’ or ‘σ ∈ bd (Ωc)’. This is the main
concern of the present subsection.
The characterization of condition ‘σ ∈ bd (Ωc)’ provided here makes use of

sets H, E and G, associated to σ ∈ Ω, defined in (6), (8) and (9). Set E was
already introduced in [2], where it is a key ingredient in the expressions pro-
viding the modulus and the radius of metric regularity of a set-valued mapping
associated to systems in the form (1). See Section 5 for details.

Proposition 2 Let σ ∈ Ω. Then G = H if and only if 0n+1 ∈ G.

Proof. The ‘only if’ part is a straightforward consequence of the fact that
0n+1 ∈ H in presence of equations. Suppose now 0n+1 ∈ G and write

0n+1 =
X
t∈T

ηt

µ
at
bt

¶
+
X
s∈S

νs

µ
as
bs

¶
+ γ

µ
0n
−1

¶
with η ∈ R(T )+ , ν ∈ RS ,

P
t∈T ηt +

P
s∈S |νs| = 1, and γ ≥ 0. Take anyµ

a

b

¶
:=
X
t∈T

λt

µ
at
bt

¶
+
X
s∈S

µs

µ
as
bs

¶
∈ C,

where λ ∈ R(T )+ , µ ∈ RS and
P

t∈T λt +
P

s∈S |µs| ≤ 1 (see 7); and let us see

that
µ
a

b

¶
∈ G, which will finish the proof. To do this observe that there exists

α ≥ 0 such that

φ (α) :=
X
t∈T

(λt + αηt) +
X
s∈S

|µs + ανs| = 1, (11)

11



which is a consequence of the continuity of φ on R+ together with φ (0) ≤ 1 and
limα→+∞φ (α) = +∞.
Then the expressionµ
a

b

¶
+ α0n+1 =

X
t∈T

(λt + αηt)

µ
at
bt

¶
+
X
s∈S

(µs + ανs)

µ
as
bs

¶
+ αγ

µ
0n
−1

¶

ensures, appealing to (11), that
µ
a

b

¶
∈ G.

The following theorem characterizes condition ‘σ ∈ bd (Ωs)’ provided that
σ ∈ Ω\Ω∞. This theorem, together with Theorem 8, yields the aimed charac-
terization of bd (Ωc).

Theorem 6 Let σ ∈ Ω\Ω∞. Then, σ ∈ bd (Ωs) if and only if 0n+1 ∈ bd (H) ∩
bd (G).

Proof. Let σ ∈ bd (Ωs). In particular, there exists a sequence {σr} ⊂ Ωs
converging to σ. Then, from Theorem 1, for each r ∈ N there must exist λr ∈
R(T )+ and µr ∈ RS such thatµ

0n
1

¶
=
X
t∈T

λrt

µ
art
brt

¶
+
X
s∈S

µrs

µ
ars
brs

¶
.

Taking γr :=
X
t∈T

λrt +
X
s∈S

|µrs| > 0, we have

0n+1 =
X
t∈T

λrt
γr

µ
art
brt

¶
+
X
s∈S

µrs
γr

µ
ars
brs

¶
+
1

γr

µ
0n
−1

¶
, (12)

with X
t∈T

λrt
γr
+
X
s∈S

¯̄̄̄
µrs
γr

¯̄̄̄
= 1. (13)

From (12) we obtain°°°°°X
t∈T

λrt
γr

µ
at
bt

¶
+
X
s∈S

µrs
γr

µ
as
bs

¶
+
1

γr

µ
0n
−1

¶°°°°° =°°°°°X
t∈T

λrt
γr

µµ
at
bt

¶
−
µ
art
brt

¶¶
+
X
s∈S

µrs
γr

µµ
as
bs

¶
−
µ
ars
brs

¶¶°°°°° ≤

X
t∈T

λrt
γr

d (σ, σr) +
X
s∈S

¯̄̄̄
µrs
γr

¯̄̄̄
d (σ, σr) = d (σ, σr) .

Appealing to (13), we observe that
X
t∈T

λrt
γr

µ
at
bt

¶
+
X
s∈S

µrs
γr

µ
as
bs

¶
∈ E and then

0n+1 = lim
r

(X
t∈T

λrt
γr

µ
at
bt

¶
+
X
s∈S

µrs
γr

µ
as
bs

¶
+
1

γr

µ
0n
−1

¶)
∈ cl (G) .

12



From Theorem 3 and Corollary 2, we have 0n+1 /∈ int (H) and so 0n+1 /∈ int (G)
because G ⊂ H. Then, 0n+1 ∈ bd (H)∩ bd (G) (recalling again that 0n+1 always
belongs to H when S 6= ∅).
Conversely, assume that 0n+1 ∈ bd (H) ∩ bd (G), and take any sequence½µ
ar

br

¶¾
⊂ G converging to 0n+1. For each r ∈ N there must exist λr ∈ R(T )+

and µr ∈ RS , with
X
t∈T

λrt +
X
s∈S

|µrs| = 1, and γr ≥ 0 such that

µ
ar

br

¶
=
X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶
+ γr

µ
0n
−1

¶
.

Hence we obtainµ
γr +

1

r

¶µ
0n
1

¶
=

X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶

−
ÃX
t∈T

λrt +
X
s∈S

|µrs|
! ∙µ

ar

br

¶
− 1

r

µ
0n
1

¶¸
and, so,µ
0n
1

¶
=
X
t∈T

λrt
γr +

1
r

µ
at − ar

bt − br + 1
r

¶
+
X
s∈S

µrs
γr +

1
r

µ
as − sign (µrs) a

r

bs − sign (µrs) b
r + sign (µrs)

1
r

¶
.

Now we consider, for each r ∈ N, the system

σr :=

½
(at − ar)0 x ≥ bt − br + 1

r , t ∈ T ;
(as − sign (µrs) a

r)
0
x = bs − sign (µrs) b

r + sign (µrs)
1
r , s ∈ S

¾
.

So we have
µ
0n
1

¶
∈ Nr, where Nr is the second moment cone of σr. Hence,

Theorem 1 states σr ∈ Ωs for all r and, since {σr} clearly converges to σ,

because limr

µ
ar

br

¶
= 0n+1, we obtain σ ∈ cl (Ωs) . Since 0n+1 /∈ int (H) , it

must be σ ∈ bd (Ωs) .
The following theorem shows one of the essential differences between the

well-posedness with respect to consistency in Ω and in Θ. Theorem 6.1 in
[12] shows that condition θ ∈ int (Θc) , provided that θ ∈ Θc, turns out to be
equivalent to different stability criteria spread out in the literature. One of these
conditions is expressed by 0n+1 /∈ cl (C) . Note that set E plays the role of C
when we deal with Ω.

Theorem 7 Let σ ∈ Ωc. Then σ ∈ int (Ωc) if and only if 0n+1 /∈ cl (E) .

Proof. We begin by supposing 0n+1 /∈ cl (E) . Write σ := {a0tx ≥ bt, t ∈ T ;

a0sx = bs, s ∈ S} ∈ Ωc. Denote by eΘ the parameter space of all inequality

13



systems indexed by T ∪ S. Given a ‘choice of signs’ γ ∈ {−1, 1}S , we consider
the system

θγ := {a0tx ≥ bt, t ∈ T ; γ (s) a0sx ≥ γ (s) bs, s ∈ S} ∈ eΘc. (14)

For any γ we have

Cγ := conv

½µ
at
bt

¶
, t ∈ T ;

µ
γ (s) as
γ (s) bs

¶
, s ∈ S

¾
⊂ E.

In fact,
E =

[
γ∈{−1,1}S

Cγ .

Under the current hypothesis, for every γ one has 0n+1 /∈ cl (Cγ) , which together
with the consistency of θγ entails, applying [13, Theorem 3.1], θγ ∈ int(eΘc).
Assume, reasoning by contradiction, that σ ∈ cl (Ωi) and write σ = limr σr,

with σr :=
©
(art )

0 x ≥ brt , t ∈ T ; (ars)
0 x = brs, s ∈ S

ª
∈ Ωi for all r. We shall

find θγ0 ∈ cl(eΘi) for a suitable γ0 ∈ {−1, 1}S , attaining a contradiction. Ac-
cording to Theorem 1, write, for each r,µ

0n
1

¶
= limk

(X
t∈T

λr,kt

µ
art
brt

¶
+
X
s∈S

µr,ks

µ
ars
brs

¶)
, (15)

where
n
λr,k

o
k∈N
⊂ R(T )+ and

©
µr,k

ª
k∈N ⊂ R

S . Because of the finiteness of S,

and considering suitable subsequences if necessary, we may assume that S is
partitioned as S+ ∪ S− with

µr,ks ≥ 0 if s ∈ S+ and µr,ks < 0 if s ∈ S−, for all r and all k.

In other words, the sets S+ := {s ∈ S | µr,ks ≥ 0} and S− := {s ∈ S | µr,ks < 0}
do not depend on either r or k. Define γ0 ∈ {−1, 1}

S by γ0 (s) = 1 if s ∈ S+
and γ0 (s) = −1 if s ∈ S−. Then (15) yields, for each r,

θrγ0 :=
©
(art )

0
x ≥ brt , t ∈ T ; γ0 (s) (a

r
s)
0
x ≥ γ0 (s) b

r
s, s ∈ S

ª
∈ eΘi,

appealing to [12, Theorem 4.4] (the version of Theorem 1 for inequality systems).
Thus θγ0 = limr θ

r
γ0
∈ cl(eΘi).

Conversely, we assume now that σ ∈ int (Ωc) , and so, by Theorem 3 and
Corollary 2, one has 0n+1 /∈ int (H) and then 0n+1 /∈ int (G) (recall that G ⊂
H). Since 0n+1 ∈ bd (H) , Theorem 6 ensures 0n+1 6∈ bd (G) . So, 0n+1 /∈ cl (G)
and in particular 0n+1 /∈ cl (E) .
In order to go deeply in the topology relative to Ω\Ω∞, we need the following

technical result.

Lemma 1 Let σ ∈ Ωi\Ω∞. Then, there exists ρ ≥ 0 such that
µ
0n
ρ

¶
∈ cl (E) .
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Proof. Since
¡
0n
1

¢
∈ cl (N) (Theorem 1), there exist some sequences {λr} ⊂

R(T )+ and {µr} ⊂ RS such that
µ
0n
1

¶
= limr

(X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶)
.

Then, the sequence {ηr} , where ηr :=
X
t∈T

λrt +
X
s∈S

|µrs| for all r, does not

converge to zero, because σ /∈ Ω∞ (appealing to Corollary 1(ii) and Proposition
1). Therefore, {ηr} has a subsequence, denoted in the same way for the sake of
brevity, such that ηr > 0 for all r and {1/ηr} converges to certain ρ ≥ 0. Thenµ
0n
ρ

¶
= limr

(X
t∈T

λrt
ηr

µ
at
bt

¶
+
X
s∈S

µrs
ηr

µ
as
bs

¶)
∈ cl (E) .

Theorem 8 Let σ ∈ Ω\Ω∞. Then, σ ∈ bd (Ωc) if and only if σ ∈ bd (Ωs) .

Proof. First we prove the ‘if part’. If σ ∈ bd (Ωs) , obviously σ 6∈ int (Ωc) .
Moreover, Corollary 2 ensures σ 6∈ int (Ωi) . Thus, σ ∈ bd (Ωc) . In order to
prove the ‘only if part’, assume that σ ∈ bd (Ωc) . If σ ∈ Ωc, the previous
theorem yields 0n+1 ∈ cl(E) ⊂ cl (G) . Now Corollary 2 and Theorem 3 entail
0n+1 6∈ int (G) because 0n+1 6∈ int (H) . In such a way, 0n+1 ∈ bd (H) ∩ bd (G)
and Theorem 6 guarantees σ ∈ bd (Ωs) . In other case, if σ /∈ Ωc, the previous
Lemma yields the existence of ρ ≥ 0 such that

µ
0n
ρ

¶
∈ cl (E) . Then 0n+1 ∈

cl(E) + ρ

µ
0n
−1

¶
⊂ cl (G) and, as in the previous case, σ ∈ bd (Ωs) .

Corollary 4 The following statements hold:
(i) int (Ωw) ⊂ Ω∞
(ii) (Ωw\Ω∞) ⊂ bd (Ωc)

Proof. (i) We have int (Ωw) ∩ (Ω\Ω∞) ⊂ [int (Ωi) \int (Ωs)] ∩ (Ω\Ω∞) = ∅,
according to Corollary 2.
(ii) Let σ ∈ (Ωw\Ω∞) . Appealing to Theorem 1(i) and Corollary 1(ii) we

obtain θσ ∈ (Θw\Θ∞) , and then θσ /∈ int (Θi) , according to Theorem 2. So,
from Theorem 5, d (σ,Ωc) = d (θσ,Θc) = 0. Therefore, σ ∈ bd (Ωc) .

4 Distance to ill-posedness
In this section we extend Theorem 3(iv), established for linear inequality sys-
tems, to systems of linear equations and inequalities. First, we need the follow-
ing lemma.

Lemma 2 Let σ, σ̃ ∈ Ω such that d (σ, σ̃) ≤ ε for some ε > 0, and as-
sume that there exists ρ ≥ ε verifying ρcl (B) ∩ cl (G) = ∅. Then we have
(ρ− ε) cl (B) ∩ cl

³
G̃
´
= ∅. Consequently, if d (0n+1, cl (G)) > ρ then we have

d
³
0n+1, cl

³
G̃
´´

> ρ− ε.
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Proof. Suppose, reasoning by contradiction, that there exists y ∈ (ρ− ε) cl (B)∩
cl
³
G̃
´
. Then, there exist some sequences {λr} ⊂ R(T )+ , {µr} ⊂ RS and {γr} ⊂

R+, with
X
t∈T

λrt +
X
s∈S

|µrs| = 1 for all r, verifying

y = lim
r
yr, where yr :=

X
t∈T

λrt

µ
ãt
b̃t

¶
+
X
s∈S

µrs

µ
ãs
b̃s

¶
+ γr

µ
0n
−1

¶
∈ G̃.

Define, for each r,

xr :=
X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶
+ γr

µ
0n
−1

¶
.

Then kxr − yrk ≤
ÃX
t∈T

λrt +
X
s∈S

|µrs|
!
d (σ, σ̃) = d (σ, σ̃) ≤ ε and, so, kxrk ≤

kyrk+ ε. Assuming w.l.o.g. that {xr} converges to certain x ∈ cl (G) , we have
kxk ≤ kyk+ ε ≤ ρ, attaining a contradiction.

Theorem 9 Let σ ∈ Ω\Ω∞. Then

d (σ, bd (Ωc)) = d (σ, bd (Ωs)) = d (0n+1, bd (G)) .

Proof. The equality d (σ, bd (Ωc)) = d (σ, bd (Ωs)) comes from Theorem 4(iii),
taking also into account that any system whose distance to σ is finite remains
in Ω\Ω∞. In order to prove d (σ, bd (Ωs)) = d (0n+1, bd (G)) we shall distinguish
three cases.
Case 1 : σ ∈ int (Ωs) . In this case Theorem 4(i) guarantees 0n+1 ∈ int (H) .

So, for ε > 0 small enough we can writeµ
0n
ε

¶
=
X
t∈T

ηt

µ
at
bt

¶
+
X
s∈S

νs

µ
as
bs

¶
+ α

µ
0n
−1

¶
, (16)

for certain η ∈ R(T )+ , ν ∈ RS and α ≥ 0, with β :=
X
t∈T

ηt +
X
s∈S

|νs| ≤ 1 (see

(7)). Note that ε > 0 implies β > 0, and (16) may be rewritten as

0n+1 =
X
t∈T

ηt
β

µ
at
bt

¶
+
X
s∈S

νs
β

µ
as
bs

¶
+

α+ ε

β

µ
0n
−1

¶
∈ G.

Now Proposition 2 entails G = H. Moreover, appealing to Theorem 5 and
Theorem 3 (see also Remark 1 and Theorem 4), we have

d (σ, bd (Ωs)) = d (σ,Ωc) = d (θσ,Θc) = d (0n+1, bd (H)) = d (0n+1, bd (G)) .

Case 2 : σ ∈ int (Ωc) . Observe that, in this case, G 6= Rn+1, because other-
wise 0n+1 ∈ int (H) . So, bd (G) is a nonempty closed set and

d (0n+1, bd (G)) =

°°°°µab
¶°°°° (17)
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for certain
µ
a

b

¶
∈ bd (G) .

Next we prove that d (σ, bd (Ωs)) ≥
°°°°µab

¶°°°° .
Reasoning by contradiction, we suppose that there exist some σ̃ ∈ bd (Ωs) ,

with d (σ, σ̃) ≤ ρ <

°°°°µab
¶°°°° for certain ρ > 0. Since σ ∈ int (Ωc) then, from

Theorem 4(ii), 0n+1 ∈ bd (H) \bd (G) , and so 0n+1 /∈ cl (G) . Therefore, using

(17), we obtain d (0n+1, cl (G)) =

°°°°µab
¶°°°° . So, ρcl (B)∩cl (G) = ∅ and applying

the previous lemma (with ε = ρ) we conclude {0n+1} ∩ cl
³
G̃
´
= ∅.

Hence 0n+1 ∈ ext
³
G̃
´
, in contradiction with 0n+1 ∈ bd

³
H̃
´
∩ bd

³
G̃
´
,

which comes from the assumption σ̃ ∈ bd (Ωs) ∩ (Ω\Ω∞) and Theorem 4(iii).

In order to prove that d (σ, bd (Ωs)) ≤
°°°°µab

¶°°°° we will construct a system
σ̃ ∈ cl (Ωs) verifying d (σ, σ̃) ≤

°°°°µab
¶°°°° .

Since
µ
a

b

¶
∈ bd (G) , there exist some sequences {λr} ⊂ R(T )+ , {µr} ⊂ RS ,

{γr} ⊂ R+ with
X
t∈T

λrt +
X
s∈S

|µrs| = 1 for all r, verifying

µ
a

b

¶
= limr

(X
t∈T

λrt

µ
at
bt

¶
+
X
s∈S

µrs

µ
as
bs

¶
+ γr

µ
0n
−1

¶)
. (18)

From this expression, we can define S+ and S− in a similar way as in the
proof of Theorem 7. That is, S = S+ ∪ S− (with S+ ∩ S− = ∅) and w.l.o.g.
{µrs}r ⊂ R+ if s ∈ S+ and {µrs}r ⊂ R \ R+ if s ∈ S−.
Now we consider the system:

σ̃ :=

½
(at − a)

0
x ≥ bt − b, t ∈ T

(as − a)
0
x = bs − b, s ∈ S+; (bs + a)

0
x = bs + b, s ∈ S−

¾
. (19)

Recall that d (σ, σ̃) =

°°°°µab
¶°°°° < +∞ and thus σ̃ /∈ Ω∞.

Applying (18) we obtain:

limr

⎧⎨⎩X
t∈T

λrt

µ
at − a

bt − b

¶
+
X
s∈S+

µrs

µ
as − a

bs − b

¶
+
X
s∈S−

µrs

µ
as + a

bs + b

¶
+ γr

µ
0n
−1

¶⎫⎬⎭ =

=

µ
a

b

¶
− limr

⎧⎨⎩X
t∈T

λrt +
X
s∈S+

µrs −
X
s∈S−

µrs

⎫⎬⎭
µ
a

b

¶
= 0n+1

because
X
t∈T

λrt +
X
s∈S+

µrs −
X
s∈S−

µrs =
X
t∈T

λrt +
X
s∈S

|µrs| = 1, for all r.
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Then, 0n+1 ∈ cl
³
G̃
´
where G̃ is associated to σ̃ in (19), and then (taking

account G̃ ⊂ H̃) either 0n+1 ∈ bd
³
H̃
´
∩ bd

³
G̃
´
or 0n+1 ∈ int

³
H̃
´
. Any case,

Theorem 4 entails σ̃ ∈ cl (Ωs).
Case 3. According to Theorem 4, the remaining case is σ ∈ bd (Ωs), and the

same theorem yields the aimed equality.

4.1 The finite case

There exists an increasing literature (see, e.g.[6], [9], [20], [21], [22] and [23])
about stability and well/ill-posedness for linearly constrained systems in the
context of conic linear systems of the form

δ : b−Ax ∈ CY ,
x ∈ CX,

(20)

where CX ⊂ X and CY ⊂ Y are closed convex cones in the finite-dimensional
normed spaces X and Y . Here b ∈ Y and A ∈ L (X,Y ) is a linear operator,
with norm kAk := sup {kAxk | kxk ≤ 1} . The parameter space of all the data
instances (20) is endowed with the product norm

kδk = k(A, b)k := max {kAk , kbk} . (21)

This model includes our constraint system (1) when T is finite just by taking
CX := Rn and CY := −R|T |+ × {0m} , where |T | denotes the cardinality of T
(recall |S| = m).
Here we derive a finite-dimensional version of the distance to ill-posedness

given by Theorem 9, following the steps from Theorems 1 and 2 in [9]. This
approach requires as an additional hypothesis the consistency of the nominal
system and, then, it actually provides the distance to inconsistency.
If we identify a ∈ Rn with the linear operator x 7→ a0x, a suitable norm to

be used in Rn+1 is °°°°µab
¶°°°° = max {kak∗ , |b|} , (22)

where the norm k·k in X = Rn is arbitrary. In Y = RT∪S we shall use the norm
k·k∞.
Specifically, our system σ = {a0tx ≥ bt , t ∈ T ; a0sx = bs , s ∈ S}, when T is

finite, can be rewritten in the form (20), where the t-th row of the matrix A is
a0t, and the t-th component of the vector b is bt, for all t ∈ T ∪ S. Then, using
the norm (21), we obtain:

kσk = max {kAk , kbk} = max
½
max
kxk≤1

kAxk , kbk
¾

= max
t∈T

max {katk∗ , |bt|} = maxt∈T

°°°°µatbt
¶°°°° .
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For the system δ in (20), [9] presents different mathematical programs each
of whose optimal values provides either the exact distance to inconsistency,
denoted by ρ(δ), or an approximation of ρ(δ) to within certain constants. In
particular, when applied to σ, assumed consistent, Theorem 2 in [9] establishes
that this distance coincides with the optimal value of the program

Infy,q,g max {kA0y − qk∗ , |b0y + g|}
s.t. y ∈ C∗Y , kyk∗ = 1, q ∈ C∗X , g ≥ 0,

(23)

where C∗Y := {y ∈ Y | y0z ≥ 0, for all z ∈ CY } .
Writing (λ, µ) := −y, the program (23) is equivalent to

Infλ,µ,g max
©°°P

t∈T λtat +
P

s∈S µsas
°°
∗ ,
¯̄P

t∈T λtbt +
P

s∈S µsbs − g
¯̄ª

s.t. λ ≥ 0T , µ ∈ RS ,
P

t∈T λt +
P

s∈S |µs| = 1, g ≥ 0.
By defining wn+1 :=

P
t∈T λtbt +

P
s∈S µsbs − g, and according to (22), we

obtain another equivalent program

Infλ,µ

°°°°µ w
wn+1

¶°°°°
s.t. λ ≥ 0T , µ ∈ RS ,

P
t∈T λt +

P
s∈S |µs| = 1,

w =
P

t∈T λtat +
P

s∈S µsas, wn+1 ≤
P

t∈T λtbt +
P

s∈S µsbs.

In other words, we have

ρ (σ) = inf

½°°°°µ w

wn+1

¶°°°°¯̄̄̄ µ w

wn+1

¶
∈ G

¾
= d (0n+1, G) = d (0n+1, bd (G)) .

The last equality comes from the fact that 0n+1 /∈ int (G) because of the con-
sistency of σ.
As a final remark, we point out that Theorem 9 extends the previous result

in two different ways: T is arbitrary and σ is allowed to be inconsistent. Our
approach also intends to emphasize the geometrical aspects underlying the sta-
bility of systems (1). To illustrate this point, let us come back to Example 2
(see Figure 1).

Example 3 (Example 2 revisited) Consider again the consistent system, in
R2, σ = {x1 + x2 ≥ 0, x1 − x2 ≥ 0; x2 = 0} . It is very easy to check that
d (03, bd (G)) is attained, with respect to k·k∞ , at

¡
1
3 ,±

1
3 , 0
¢0
. Now we attend

to some details in the proof of Theorem 9. Taking (a1, a2, b)
0
=
¡
1
3 ,

1
3 , 0
¢0
in (17)

written, according to (18), as¡
1
3 ,

1
3 , 0
¢0
= 0 (1, 1, 0)

0
+ 1

3 (1,−1, 0)
0
+ 2

3 (0, 1, 0)
0
,

system (19), one of those in which the distance to inconsistency is attained,
reads as

σ̃ =
©
2
3x1 +

2
3x2 ≥ 0,

2
3x1 −

4
3x2 ≥ 0;

−1
3 x1 +

2
3x2 = 0

ª
.

Note that the last two constraints of σ̃ are equivalent to x1 − 2x2 ≥ 0 and
x1 − 2x2 = 0. So, σ̃ is consistent but arbitrarily small perturbations can make
it inconsistent. The reader can also see that σ̃ is ill-posed attending to G̃ = H̃.

19



5 Metric regularity
As an application of the previous sections, we will extend [2, Corollary 3.4] to
systems of linear equations and inequalities. The referred result establishes that
the distance to inconsistency of an homogeneous linear semi-infinite inequality
system, say θ = {a0tx ≥ 0, t ∈ T} , is equal to the regularity modulus of an
appropriate (set-valued) mapping at the origin.
Let F : X ⇒ Y be a set-valued mapping acting from a Banach space X to

the subsets of a Banach space Y, and let (x̄, ȳ) ∈ gph (F ) := {(x, y) ∈ X × Y |
y ∈ F (x)} (the graph of F ). Then F is said to be metrically regular at x̄ for ȳ
if there exists a constant κ > 0 such that

d
¡
x, F−1 (y)

¢
≤ κd (y, F (x)) for all (x, y) close to (x̄, ȳ) , (24)

where F−1 is the inverse of F , defined by x ∈ F−1 (y)⇔ y ∈ F (x) .
The metric regularity is a basic quantitative property of mappings in vari-

ational analysis which is widely used in both theoretical and computational
studies (see, e.g., [7] for further information about this concept). If we consider
the generalized equation ‘y ∈ F (x)’, the distance of the left hand side of (24)
is the distance from the "approximate solution" x to the set F−1 (y) of feasi-
ble solutions associated to the value y of the parameter. The distance of the
right hand side of (24) is a kind of residual, usually much easier to compute or
estimate than the left hand side. In particular, if we know an estimate for the
rate of convergence of the residuals to zero, then we can evaluate the rate of
convergence of a sequence of approximate solutions to an exact solution.
The infimum of κ for which (24) holds is the regularity modulus, denoted by

regF (x̄ | ȳ) (defined as +∞ if F is not metrically regular at x̄ for ȳ). The radius
of metric regularity, denoted by radF (x̄ | ȳ) is defined as the infimum of the
"size" (Lipschitz modulus; see, e.g., [7]) of the perturbations needed to lose the
metric regularity property. In [7] it is shown that radF (x̄ | ȳ) ≥ 1/regF (x̄ | ȳ)
(assuming that gph (F ) is locally closed at (x̄, ȳ)). The equality holds if either
dimX <∞ and dimY <∞, or gph (F ) is a closed and convex cone and (x̄, ȳ) is
the origin inX×Y. The paper [19] establishes the equality whenX is an Asplund
space and dimY < ∞, whereas [16] proves that the inequality is generically
strict.
In the sequel we will consider the homogeneous system

σ0 := {a0tx ≥ 0, t ∈ T ; a0sx = 0, s ∈ S} (25)

in the continuous case; i.e., T is a compact Hausdorff space and t 7→ at is
continuous on T (recall that s 7→ as is trivially continuous since we are con-
sidering the discrete topology in S). Let C (T,R) denote the space of functions
f : T −→ R that are continuous on T, and consider the set-valued mapping
F : Rn −→ C (T,R) × RS ≡ C (T ∪ S,R) (endowed with the supremum norm)
given by

F (x) := a (·)0 x− (C (T,R+)× {0S}) , (26)
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where 0S is the zero function on S and a (t) := at for all t ∈ T ∪ S. So, a given
b ∈ C (T,R)×RS belongs to F (x) if and only if x is a feasible solution of (1). In
other words, F−1 (b) is the feasible set of (1). In this way, the metric regularity
of F informs about the stability of (1) when a (·) remains fixed and b (·) is the
parameter to be perturbed.
The radius of metric regularity of this mapping is given by

radF (x̄ | b) = inf
l∈L(Rn,C(T,R)×RS)

½
klk | F + l not metrically regular

at x̄ for b+ l (x̄)

¾
,

where L
¡
Rn, C (T,R)×RS

¢
denotes the set of all (continuous) linear functions

from Rn to C (T,R)×RS , endowed with the usual operator norm (see for instance
§4.1). Specifically, if

l (x) =

µ
g (·)0 x
h (·)0 x

¶
for g ∈ C (T,Rn) and h : S −→ Rn,

we have

klk = max
½
sup
t∈T

kg (t)k∗ , maxs∈S
kh (s)k∗

¾
.

From now on we will assume that the norm considered in Rn+1 satisfies°°°°µab
¶°°°° = °°°°µ a

−b

¶°°°° for all µab
¶
∈ Rn+1. (27)

Note that any p-norm, but not any norm (see [25, Theorem 15.2]), verifies this
condition. We shall consider Rn endowed with the norm

kak :=
°°°°µa0

¶°°°° for all a ∈ Rn. (28)

The reader can check that properties (27) and (28) also hold for the associated
dual norms. Under these hypotheses we have the following result.

Theorem 10 [2, Theorem 3.1 and Corollary 3.2] For any (x̄, b) ∈ gphF we
have

radF (x̄ | b) = 1

regF (x̄ | b) = inf
½
kuk∗ |

µ
u

u0x̄

¶
∈ E (b)

¾
,

where E (b) is the set defined in (8).

Now, the announced extension of [2, Corollary 3.4] to linear systems includ-
ing equations reads as follows.

Proposition 3 The distance to infeasibility of the system σ0 given by (25) is
equal to radF (0n | 0T∪S) , where F is given by (26).
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Proof. According to our previous comments we have
°°°°µab

¶°°°°
∗
=

°°°°µ a

−b

¶°°°°
∗
for

all
µ
a

b

¶
∈ Rn+1, which entails

°°°°µa0
¶°°°°
∗
≤
°°°°µab

¶°°°°
∗
. Moreover kak∗ =

°°°°µa0
¶°°°°
∗
,

and appealing to Theorem 9 we obtain

d (σ0, bd (Ωc)) = dk·k∗ (0n+1, bd (G0)) = inf

½
kak∗ |

µ
a

0

¶
∈ E0

¾
,

since for the homogeneous system σ0 we have

G0 =

½µ
u

v

¶
∈ Rn |

µ
u

0

¶
∈ E0, v ≤ 0

¾
.

The proof finishes by just applying Theorem 10.
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