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Sufficient conditions for total ill-posedness in
linear optimization∗

M.J. Cánovas† M.A. López‡ J. Parra† F.J. Toledo†

Abstract

This paper deals with the so-called total ill-posedness of linear op-
timization problems with an arbitrary (possibly infinite) number of
constraints. We say that the nominal problem is totally ill-posed if it
exhibits the highest unstability in the sense that arbitrarily small per-
turbations of the problem’s coefficients may provide both, consistent
(with feasible solutions) and inconsistent problems, as well as bounded
(with finite optimal value) and unbounded problems, and also solvable
(with optimal solutions) and unsolvable problems . In this paper we
provide sufficient conditions for the total ill-posedness property exclu-
sively in terms of the coefficients of the nominal problem.
Key words. Linear programming, semi-infinite programming, ill-

posedness.
Mathematics Subject Classification (2000): 90C05, 65F22, 90C34,

15A39, 52A40.

1 Introduction

Consider the linear optimization problem in the Euclidean space, Rn,

π : Inf c0x
s.t. a0tx ≥ bt , t ∈ T, (1)

where c, x, at ∈ Rn, bt ∈ R, and y0 denotes the transpose of y ∈ Rn. The
non-empty index set, T , of the constraint system, σ = {a0tx ≥ bt , t ∈ T},
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is arbitrary (possibly infinite) and, so, the results of this paper hold, as a
particular case, in ordinary linear programming (LP). When T is infinite the
problem π = (c,σ) is a linear semi-infinite programming (LSIP) problem.
The feasible set of π is denoted by F , its optimal value by v, and the optimal
set by F op.

The parameter space of all the problems (1), with constraint systems hav-
ing the same index set T , is denoted by Π. The different problems in Π, and
their associated elements, are distinguished by means of sub(super)scripts.
So, if π1 also belongs to Π, we write π1 =

¡
c1,σ1

¢
and σ1 := {

¡
a1t
¢0
x ≥ b1t ,

t ∈ T}, and its feasible set, optimal value and optimal set are, accordingly,
denoted by F1, v1 and F

op
1 , respectively.

Πc denotes the subset of Π formed by all the consistent problems (π ∈
Πc ⇔ σ is consistent⇔ F 6= ∅ ⇔ v < +∞), while Πi := Π\Πc represents the
subset of all the inconsistent problems. Πb denotes the subset of the bounded
problems, that is those problems with finite optimal value (v finite). Finally,
we denote by Πs the subset of the solvable problems, that is those problems
with non-empty optimal set (F op 6= ∅). Obviously, Πs ⊂ Πb ⊂ Πc.

We introduce an extended distance δ : Π×Π→ [0,+∞] by means of
δ (π1,π) := max

©°°c1 − c°° , d (σ1,σ)ª , (2)

where

d (σ1,σ) := sup
t∈T

°°°°µa1tb1t
¶
−
µ
at
bt

¶°°°° ,
assuming that we have considered two arbitrary norms in Rn and Rn+1,
denoted both by k·k . In this way Π is endowed with the topology of the
uniform convergence of the coefficients vectors [7, Chapter 10]. Given π ∈ Π
and eΠ ⊂ Π, we write, as usual, δ(π, eΠ) := inf{δ (π, eπ) , eπ ∈ eΠ}, but now
δ(π, eΠ) can take the value +∞.

In (Π, δ), and also in the Euclidean space, int(X), cl(X), and bd(X)
denote the interior set, the closure, and the boundary of the set X, respec-
tively. By ext(X) we represent the exterior of X; i.e., the complementary
set of cl(X).

The stability of an optimization model is considered nowadays a crucial
paradigmatic property, mainly by those scientists applying optimization to
real world problems. Different authors (see, for instance, Todorov [13])
consider that an optimization problem is well-posed when it has a unique
optimal solution and, moreover, this solution can be approximated by se-
quences of optimal solutions associated with any sequence of solvable prob-
lems converging to the nominal one. In [2] a general framework including
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other different notions of well-posedness in LSIP is developed. Some of these
notions are closely related to the condition that a problem belongs to the
interior of the set of solvable problems, int(Πs). (See, also, [1].)

Generically we may consider that a problem is ill-posed when arbitrar-
ily small perturbations of its coefficients yield different kind of problems,
namely, consistent/inconsistent, bounded/unbounded, solvable/unsolvable,
etc. This idea leads us to say that the ill-posed problems, with respect to
each one of these properties, are those problems belonging to the common
boundary of the corresponding pair of sets; i.e., the sets bd (Πc) , bd (Πb) and
bd (Πs) , respectively.

Concerning the ill-posedness with respect to the consistency, there are
many contributions in the context of conic linear optimization ([6], [9], [10]),
in the line of the outstanding paper of Renegar ([11]), whereas in [3] we have
characterized this set of ill-posed problems, bd (Πc) , in the LSIP setting.
The influence of the distance to ill-posedness, δ(π, bd (Πc)), on the numerical
complexity of certain algorithms is emphasized in [3], where the relationship
of this distance with certain stability properties, as the Aubin property of
the feasible set mapping (see, for instance, [12]), is also explored in detail.

Again in the LSIP setting, the set of ill-posed problems with respect to
the solvability, bd (Πs) , has been characterized in [4], and the problem of
measuring the distance to this set, δ(π, bd (Πs)), is approached (either by
means of an exact formula or through some lower/upper bounds) in [5].

Here in this paper we call totally ill-posed to those problems which are si-
multaneously unstable in all the previous senses, i.e., the problems belonging
to the set

bd (Πc) ∩ bd (Πb) ∩ bd (Πs) .

In [4, Thm. 1] we have proved that Πb and Πs have the same closure, the
same interior and, therefore, the same boundary; i.e., bd (Πb) = bd (Πs) .
This fact justifies the choice of

bd (Πc) ∩ bd (Πs)

as a concept of total ill-posedness in linear optimization.
In [4, Thm. 3] we have also characterized the set bd (Πc) ∩ bd (Πs) in

terms of two ingredients: the convex hull, in Rn, of {at, t ∈ T ; c} , denoted
by Z+, that is

Z+ := conv ({at, t ∈ T ; c}) ,
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according to the notation introduced in §2, and the parameter set

cl (bd (Πc) ∩Πc) .
Since that this last set is not expressed in terms of the coefficients of π,
the main objective of this paper is to derive some sufficient conditions to
guarantee that π is totally ill-posed, in terms exclusively of the problem’s
coefficients. This is done in §3, whereas §4 presents different examples in
order to show that these sufficient conditions are not necessary.

2 Preliminaries

This section gives account of the notation and basic definitions, results, and
tools used later on. Given ∅ 6= X ⊂ Rk, by conv(X) and cone(X) we denote
the convex hull of X and the conical convex hull of X, respectively. It is
assumed that cone (X) always contains the zero-vector 0k. We denote by
Xo the (positive) dual cone of X given by

Xo :=
n
y ∈ Rk | y0x ≥ 0 for all x ∈ X

o
.

If X is a closed convex set, O+(X) represents its recession cone, i.e.,

O+(X) :=
n
y ∈ Rk | for some x ∈ X, x+ λy ∈ X for all λ ≥ 0

o
.

R(T )+ denotes the cone of all the functions λ : T → R+ taking positive
values only at finitely many points of T .

If Λ ⊂ R, we introduce the set
ΛX := {λx : λ ∈ Λ and x ∈ X}.

We denote by k.k∗ the dual norm of k.k, that is,
kuk∗ := max

©
u0z | kzk ≤ 1ª , for u ∈ Rk.

The following sets, associated with π = (c,σ), are relevant in our analy-
sis:

A := conv ({at, t ∈ T}) , M := cone ({at, t ∈ T}) = R+A,
C := conv

µ½µ
at
bt

¶
, t ∈ T

¾¶
, N := cone

µ½µ
at
bt

¶
, t ∈ T

¾¶
= R+C,

H := C +R+
µ
0n
−1
¶
, K := N +R+

½µ
0n
−1
¶¾

= R+H,
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where R+ := [0,+∞[ . We say that H is the hypographical set, whereas M
is called first moment cone, N is the second moment cone, and K is the
characteristic cone.

If π = (c,σ) ∈ Πc, with feasible set F, we say that a0x ≥ b is a conse-
quence of σ if this inequality is satisfied at each point of F ; i.e., a0z ≥ b for
every z ∈ F .

The following proposition gathers different results which are applied
throughout the paper.

Proposition 1 Given π = (c,σ) ∈ Π, the following statements hold:
(i) π ∈ Πc if and only if µ

0n
1

¶
/∈ cl (N) ;

(ii) If π ∈ Πc, a0x ≥ b is a consequence of σ if and only ifµ
a

b

¶
∈ cl (K) ; (3)

(iii) If π ∈ Πc, then π ∈ int (Πc) if and only if 0n+1 /∈ cl (C) ;
(iv) If π ∈ bd (Πc) ∩Πi, then 0n ∈ bd (A) .

Proof. (i) constitutes a kind of extended Gale theorem (see, for instance,
[7, Theorem 4.4]).

(ii) is the so-called (non-homogeneous) Farkas Lemma ([14]) and, as a
consequence of this result, cl (K) is also called the consequent relations cone
of σ.

(iii) [8, Theorem 3.1].
(iv) [4, Lemma 1(ii)].

The existence of infinitely many coefficient vectors when T is infinite
gives rise to a pathological class of problems. This is the family

Π∞ := {π ∈ Π | δ(π, bd(Πc)) = +∞} .
The following proposition includes a characterization of these abnormal
problems.

Proposition 2 Given π ∈ Π, one has:
(i) π ∈ Π∞ if and only if

µ
0n
1

¶
∈ O+(cl(C));

(ii) Π∞ ⊂ Πi;
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(iii) If π ∈ ΠiÂΠ∞, then there exists ρ ≥ 0 such thatµ
0n
ρ

¶
∈ cl (C) .

Proof. (i) [3, Proposition 1];
(ii) It is immediate consequence of the inclusion O+(cl(C)) ⊂ cl(N) and

Proposition 1(i);
(iii) [3, Lemma 4].

If T is finite, C is bounded and, therefore, Π∞ = ∅ as a consequence of
(i).

The following proposition provides a characterization of the ill-posedness
with respect to the consistency, as well as a formula for the distance to ill-
posedness. This formula translates the problem of measuring a distance in
the parameter space Π into a problem of calculating an Euclidean distance.

Proposition 3 [3, Theorems 4, 5 and 6] Let π ∈ ΠÂΠ∞. Then, the follow-
ing statements hold:

(i) π ∈ int (Πi)⇔ 0n+1 ∈ int (H) ;
(ii) π ∈ int (Πc)⇔ 0n+1 ∈ ext (H) ;
(iii) π ∈ bd (Πc)⇔ 0n+1 ∈ bd(H);
(iv) δ(π, bd(Πc)) = d (0n+1, bd (H)) .

The following result, together with Proposition 3(iii), provides a charac-
terization of totally ill-posedness in ΠÂΠ∞. Note that if π ∈ bd (Πc) only
the cases π ∈ bd (Πs) or π ∈ ext (Πs) are possible.

Theorem 1 Let π ∈ bd (Πc) . Then:
(i) π ∈ bd (Πs) if and only if either π ∈ cl (bd (Πc) ∩Πc) or 0n ∈ bd (Z+) ;
(ii) If π ∈ cl (bd (Πc) ∩Πc) , then 0n+1 ∈ bd (C) . The converse statement

holds when {bt, t ∈ T} is bounded.

Proof. (i) [4, Theorem 3];
(ii) [4, Theorem 4].

Corollary 1 Let π = (c,σ) be an LP problem (T finite). Then, π is totally
ill-posed if and only if 0n+1 ∈ bd(H) and either 0n ∈ bd (Z+) or 0n+1 ∈
bd (C).

Proof. Apply Theorem 1 and Proposition 3(iii).
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3 Sufficient conditions for π ∈ cl (bd (Πc) ∩ Πc)
Theorem 1(ii) states that, under the assumption of boundedness of the set
{bt, t ∈ T}, the condition 0n+1 ∈ bd (C) guarantees that a problem π ∈
bd (Πc) belongs also to cl (bd (Πc) ∩Πc) . This section, in fact, is devoted
to establish new sufficient conditions for a problem π ∈ bd (Πc) to belong
to cl (bd (Πc) ∩Πc) (and then to bd (Πs) , by virtue of Theorem 1(i)). The
following subsets of Rn+1, closely related to C, are key tools for this purpose.

Definition 1 Let π ∈ Π and µ ≥ 0, and define the following convex subsets
of C :

bCµ := convµ½µat
bt

¶¯̄̄̄ °°°°µatbt
¶°°°° ≤ µ, t ∈ T¾¶ ,

C̃µ := conv

µ½µ
at
bt

¶¯̄̄̄
|bt| ≤ µ, t ∈ T

¾¶
.

Theorem 2 Let π ∈ bd (Πc). If there exists µ ≥ 0 such that 0n+1 ∈
bd
³ bCµ´ , then π ∈ cl (bd (Πc) ∩Πc) .

Proof. Let π ∈ bd (Πc) , and suppose the nontrivial case π ∈ Πi. Suppose
also that there exists µ ≥ 0 such that 0n+1 ∈ bd

³ bCµ´ .
By Proposition 2(iii), there exists ρ ≥ 0 such that

µ
0n
ρ

¶
∈ cl (C) , and

let

ρ0 := sup

½
ρ ≥ 0 |

µ
0n
ρ

¶
∈ cl (C)

¾
.

It must be ρ0 < +∞ because, otherwise,
µ
0n
1

¶
∈ O+(cl(C)), entailing

π ∈ Π∞ (by Proposition 2(i)), which contradicts π ∈ bd (Πc) .
Take µ0 ≥ max {µ, ρ0 + 1} . Since

µ
0n
µ0

¶
/∈ cl (C), we can strictly sep-

arate
µ
0n
µ0

¶
and cl (C) ; i.e., there exist

µ
v

α

¶
∈ Rn+1Â{0n+1} and β ∈ R

such that
µ
v

α

¶0µ0n
µ0

¶
< β and

µ
v

α

¶0
y ≥ β for all y ∈ cl (C). In particular,

since

0n+1 ∈ bd
³ bCµ´ ⊂ cl ³ bCµ´ ⊂ cl ³ bCµ0´ ⊂ cl (C) ,
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one has β ≤ 0 and, consequently, α < 0 (since µ0 > 0). Moreover, αµ0 < β

and
µ
v

α

¶0µat
bt

¶
≥ β for all t ∈ T ; then

µ v
−α
−1
¶0µat

bt

¶
≥ β
−α > −µ0.

On the other hand, since π ∈ bd (Πc)∩Πi, Proposition 1(iv) ensures that
0n ∈ bd (A) and, therefore, we can take a supporting halfspace to A at 0n;
i.e., there exists a non-zero vector u ∈ Rn such that a0tu ≥ 0 for all t ∈ T .

Take w := v
−α and write

ur := u+
1

r
w, r = 1, 2, ...,

(ur = u, for all r, if w = 0n). Define the problem πr := (c,σr) where the
coefficient vectors of σr are given, for each t ∈ T, by

µ
art
brt

¶
:=


µ
at
bt

¶
+
£
1
r bt − a0tur

¤
+

µ
ur/ kurk22

0

¶
, if

°°°°µatbt
¶°°°° > µ0,µ

at
bt

¶
− 1

r (a
0
tw− bt)

µ
ur/ kurk22

0

¶
, if

°°°°µatbt
¶°°°° ≤ µ0,

where [α]+ := max {0,α} .
First let us see that {πr} converges to π. We know that

µ
w

−1
¶0µat

bt

¶
>

−µ0, that is, a0tw > bt − µ0 for all t ∈ T. So, and because a0tu ≥ 0 for all
t ∈ T,

a0tu
r − 1

r
bt = a

0
tu+

1

r
a0tw −

1

r
bt ≥ −1

r
µ0,

that is, 1r bt − a0tur ≤ µ0
r with

µ0
r ≥ 0, and therefore

£
1
r bt − a0tur

¤
+
≤ µ0

r . So,

if

°°°°µatbt
¶°°°° > µ0 then

°°°°µartbrt
¶
−
µ
at
bt

¶°°°° =

·
1

r
bt − a0tur

¸
+

°°°°°
µ
ur/ kurk22

0

¶°°°°°
≤ µ0

r

°°°°°
µ
ur/ kurk22

0

¶°°°°° . (4)
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In the case that
°°°°µatbt

¶°°°° ≤ µ0 we have
°°°°µartbrt

¶
−
µ
at
bt

¶°°°° =

°°°°°−1r ¡a0tw − bt¢
µ
ur/ kurk22

0

¶°°°°°
≤ µ0

r

°°°°µ w−1
¶°°°°

∗

°°°°°
µ
ur/ kurk22

0

¶°°°°° . (5)

Thus, since {ur} converges to u, the sequence
(°°°°°
µ
ur/ kurk22

0

¶°°°°°
)
converges

to

°°°°°
µ
u/ kuk22
0

¶°°°°° and, hence, it is bounded. Thus, by (4) and (5) we have
that d (σr,σ) ≤ k

r for certain constant k ≥ 0. Then {σr} converges to σ
and, consequently, {πr} converges to π.

Now let us see that πr ∈ Πc; in fact, we are going to see that rur ∈ Fr
for all r ∈ N. If

°°°°µatbt
¶°°°° > µ0 thenÃµ

at
bt

¶
+
£
1
r bt − a0tur

¤
+

µ
ur/ kurk22

0

¶!0µ
rur

−1
¶

= r
³
a0tur − 1

r bt +
£
1
r bt − a0tur

¤
+

´
= r

£
a0tur − 1

r bt
¤
+
≥ 0,

and, in the case that

°°°°µatbt
¶°°°° ≤ µ0, we haveÃµ

at
bt

¶
− 1

r (a
0
tw− bt)

µ
ur/ kurk22

0

¶!0µ
rur

−1
¶

= r
¡
a0t
¡
u+ 1

rw
¢− 1

r bt − 1
r (a

0
tw − bt)

¢
= ra0tu ≥ 0.

Finally let us see that 0n+1 ∈ cl (Cr) , which entails (applying Proposition
1(iii)) that πr ∈ bd (Πc) . In fact, since 0n+1 ∈ cl

³ bCµ0´ , we can write 0n+1 =
limk

X
t∈T

λkt

µ
at
bt

¶
with

©
λk
ª ⊂ R(T )+ ,

X
t∈T

λkt = 1, and λ
k
t = 0 if

°°°°µatbt
¶°°°° > µ0,
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for each k. As a consequence of that we get

0n+1 = lim
k

X
t∈T

−1
r
λkt

µµ
at
bt

¶0µ w
−1
¶¶µ

ur/ kurk22
0

¶

= lim
k

X
t∈T

λkt
−1
r

¡
a0tw − bt

¢µur/ kurk22
0

¶
= lim

k

X
t∈T

λkt

½µ
art
brt

¶
−
µ
at
bt

¶¾
,

and, therefore,

0n+1 = lim
k

X
t∈T

λkt

µ
art
brt

¶
∈ cl (Cr) .

The converse statement in the previous theorem is not true in general
as Example 1 shows. Moreover, this example, together with Example 2,
motivates the following new sufficient condition for π ∈ cl (bd (Πc) ∩Πc) in
terms of the set C̃µ.

Theorem 3 Let π ∈ bd (Πc) . Suppose that there exists u ∈ Mo(= O+(F ))

and µ > 0 satisfying
µ
u

−1
¶0µat

bt

¶
≥ −µ, for all t ∈ T, and such that 0n+1 ∈

bd
³
C̃µ

´
. Then π ∈ cl (bd (Πc) ∩Πc) .

Proof. Under the current hypothesis, let us consider the sequence of prob-
lems πr := (c,σr) , r = 1, 2, ..., where σr is the system whose coefficient
vectors are, for each t ∈ T,

µ
art
brt

¶
:=


µ
at
bt

¶
+
£
1
r bt − a0tu

¤
+

µ
u/ kuk22
0

¶
, if |bt| > µ,µ

at
bt

¶
+ 1

r bt

µ
u/ kuk22
0

¶
, if |bt| ≤ µ,

We verify first that {πr} converges to π. Indeed, since
µ
u

−1
¶0µat

bt

¶
≥ −µ

then, for all t ∈ T and r ∈ N,
1

r
bt − a0tu =

µ
1

r
− 1
¶
a0tu−

1

r

¡
a0tu− bt

¢ ≤ µ
r
,
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where we have used that a0tu ≥ 0 (because u ∈Mo). So we easily check that

d (σr,σ) ≤ µ
r

°°°°°
µ
u/ kuk22
0

¶°°°°° −→r→∞ 0,
and {σr} converges to σ and, consequently, {πr} converges to π.

Now let us see that πr ∈ Πc by proving that ru ∈ Fr. In fact, if |bt| > µ
we haveµ

art
brt

¶0µru
−1
¶
= r

µ
a0tu−

1

r
bt +

·
1

r
bt − a0tu

¸
+

¶
= r

·
a0tu−

1

r
bt

¸
+

≥ 0.

If |bt| ≤ µ thenµ
art
brt

¶0µru
−1
¶
= r

µ
a0tu−

1

r
bt +

1

r
bt

¶
= ra0tu ≥ 0.

Finally, let us see that πr ∈ bd (Πc) . Since 0n+1 ∈ bd
³
C̃µ

´
⊂ cl

³
C̃µ

´
, there

exists a sequence
©
λk
ª ⊂ R(T )+ , with

X
t∈T

λkt = 1, and λkt = 0 if |bt| > µ,

for each k ∈ N, such that 0n+1 = limk
X
t∈T

λkt

µ
at
bt

¶
, from which we obtain

0 = limk
X
t∈T

λkt bt. Multiplying both members by
1

r

µ
u/ kuk22
0

¶
one obtains

0n+1 = limk
X
t∈T

λkt
1

r
bt

µ
u/ kuk22
0

¶
and, therefore,

0n+1 = lim
k

X
t∈T

λkt

µ
art
brt

¶
∈ cl (Cr) .

Then πr ∈ bd (Πc) (again by virtue of Proposition 1(iii)).
Example 3, in the following section, shows that the converse statement

in the previous theorem is not true in general.

4 Examples and counterexamples

The following example shows that the converse statement in Theorem 2 is
not true in general.
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Example 1 Consider the problem

π : Inf − x1 + 0x2
s.t. 0x1 + 0x2 ≥ 1, if t = 0,

0x1 − x2 ≥ 0, if t = 1,
x1 + rx2 ≥ 0, if t = 2r − 1, r = 2, 3, . . . ,
rx1 + 0x2 ≥ r, if t = 2r, r = 1, 2, 3, . . . .

Graphically one has the situation represented in Fig. 1, where the last block
of constraints has not been represented.

0C

 

0
0
1

 
 
 
  

 

1
0

0
0

c
− 

   =       
 

0
1
0

 
 − 
  

 

1
2
0

 
 
 
  

 

1

0
r

 
 
 
  

Fig. 1. The converse of Thm. 2 is not true in general.

It is easy to check, as we can appreciate in Fig. 1, that π ∈ bd (Πc)
(because 03 ∈ bd(H)) and 03 /∈ bd

³ bCµ´ whichever µ ≥ 0 we take. Let us see
however that π ∈ cl (bd (Πc) ∩Πc) . With this aim, consider for each s ∈ N
the problem πs which comes from changing in π the constraint corresponding
to t = 0 by 1

sx1 + 0x2 ≥ 1. It is easy to check that πs ∈ bd (Πc) ∩ Πc for
all s ∈ N (in fact (s, 0)0 ∈ Fs) and δ (π,πs) =

1

s
−→
s→∞ 0. Therefore one

concludes that π ∈ cl (bd (Πc) ∩Πc) .

In view of the previous example, one could think that, if 0n+1 ∈ bd
³
C̃µ
´

for some µ ≥ 0 (in the previous example 03 ∈ bd
³
C̃0

´
), it must be π ∈

cl (bd (Πc) ∩Πc) . However, the next example shows that it is necessary to
require some additional hypothesis, as we have done in Theorem 3.
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Example 2 Consider the problem

π : Inf − x1 + 0x2
s.t. 0x1 − x2 ≥ 0, if t = 0,

x1 + tx2 ≥ 0, if t = 2k − 1, k ∈ N,
x1 + tx2 ≥ t, if t = 2k, k ∈ N,

whose coefficient vectors are represented in Fig. 2

1
1
0

 
 
 
  

0C

0
1

0

 
 − 
  

1
3
0

 
 
 
  

1
2 1

0
k

 
 − 
  

1
2
2

 
 
 
  

1
2
2

k
k

 
 
 
  

Fig. 2. 03 ∈ bd
³
C̃µ

´
for all µ ≥ 0 but π /∈ cl (bd (Πc) ∩Πc) .

For all µ ≥ 0 one has 03 /∈ bd
³ bCµ´ but 03 ∈ bd³C̃µ´ . We will see

that π /∈ cl (bd (Πc) ∩Πc) . It is easy to check that (0, 1, 1)0 is a recession
direction of cl (C1) for all π1 ∈ Π with δ (π1,π) < +∞. Let π1 ∈ Π with
δ (π1,π) ≤ ε < 1

8 and writeµ
a10
b10

¶
=

 ε01
−1+ ε02

ε03

 , µa11
b11

¶
=

 1+ ε11
1+ ε12
ε13

 .
Let us check that π1 ∈ int (Πc) if ε01 > 0 and π1 ∈ Πi if ε01 ≤ 0, from which
we will obtain π /∈ cl (bd (Πc) ∩Πc) . Indeed, if ε01 > 0 one has a1t1 ≥ ε01
for all t ∈ N∪ {0} (where a1t1 represents the first coordinate of a1t ), then
H1 ⊂ [ε01,+∞[ × R2 and, therefore, 03 ∈ ext (H1) , that is, π1 ∈ int (Πc) .
Suppose now that ε01 ≤ 0. Then

1+ ε11
1+ ε11 − ε01

µ
a10
b10

¶
+

−ε01
1+ ε11 − ε01

µ
a11
b11

¶
= (0,α,β)0 ∈ C1
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and, due to the fact that ε < 1
8 , we have |β| < −α. Thus, taking into

account that (0, 1, 1)0 is a recession direction of cl (C1) ,

(0, 0,β − α)0 = (0,α,β)0 + (−α) (0, 1, 1)0 ∈ cl (C1) ,

and then (0, 0, 1)0 ∈ cl (N1); that is, π1 ∈ Πi (by Proposition 1(i)).

The following example shows that the converse statement in Theorem 3
is not true in general.

Example 3 Consider the problem, in R,

π : Inf − x
s.t. 0x ≥ 1, if t = 0,

1
tx ≥ −t, if t = 2k, k ∈ N,
x ≥ −t, if t = 2k − 1, k ∈ N.

If we take u ∈Mo = R+, one observes that
µ
u

−1
¶0µat

bt

¶
≥ −µ is satisfied if

and only if µ ≥ 1. Then we will see that π ∈ cl (bd (Πc) ∩Πc) despite that
02 /∈ bd

³
C̃µ
´
for every µ ≥ 1. Graphically we observe what happens in Fig.

3:

C 

Cµ  

 
0
1

 
 
 

 

 
1
1

 
 − 

 

 
1/ 2

2
k
k

 
 − 

 
 

1
(2 1)k

 
 − − 

 

 
1

0 0
c −   

=   
   

 

Fig. 3. π ∈ cl (bd (Πc) ∩Πc) but 02 /∈ bd
³ eCµ´ for all µ ≥ 1.
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For proving that π ∈ cl (bd (Πc) ∩Πc) , take for each r ∈ N the problem

πr : Inf − x
s.t. 0x ≥ 1, if t = 0

1
tx ≥ −t, if t = 2k, k 6= r, k ∈ N,
0x ≥ −t, if t = 2r,
x ≥ −t, if t = 2k − 1, k ∈ N.

For each r ∈ N one has πr ∈ bd (Πc) and 02 ∈ bd
³ bCr´

2r
(where

³ bCr´
2r
de-

notes the “ bCµ” corresponding to σr with µ = 2r). Then πr ∈ cl (bd (Πc) ∩Πc)
by virtue of Theorem 2. Moreover δ (πr,π) = 1

2r −→r→∞ 0 and, therefore,

π ∈ cl (bd (Πc) ∩Πc) .
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