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1 Introduction

This paper is about regularity of mappings defined by semi-infinite constraint systems of inequalities
and equalities. We find a formula for the modulus of metric regularity, prove an Eckart-Young-
type theorem, and provide an expression for the distance to infeasibility of semi-infinite inequality
systems.

Let F : X →→ Y be a set-valued mapping acting from a Banach space X to the subsets of a
Banach space Y and let (x̄, ȳ) ∈ gphF . Here gphF = {(x, y) ∈ X × Y | y ∈ F (x)} is the graph of
F . Then F is said to be metrically regular at x̄ for ȳ if there exists a constant κ > 0 such that

(1.1) d(x, F−1(y)) ≤ κd(y, F (x)) for all (x, y) close to (x̄, ȳ) .

We denote by d(x,C) the distance from a point x to a set C, that is, d(x,C) = infy∈C ‖x− y‖, and
by F−1 the inverse of F , that is, x ∈ F−1 (y) ⇔ y ∈ F (x).

The metric regularity is a basic quantitative property of mappings in variational analysis which
is widely used in both theoretical and computational studies. For an illustration of how this concept
works, let x̄ be a solution of the inclusion ȳ ∈ F (x) for some given ȳ, let F be metrically regular at
x̄ for ȳ, and let xa and ya be approximations to x̄ and ȳ, respectively, so that (xa, ya) is sufficiently
close to (x̄, ȳ). Then, from (1.1), the distance from xa to the set of solutions F−1(ya) is bounded by
the constant κ times the residual d(ya, F (xa)). Usually, the residual is easy to compute or estimate,
while finding a solution might be considerably difficult. Under mild conditions, the metric regularity
of the mapping F guarantees that there exists a solution to the inclusion ya ∈ F (x) at distance from
xa proportional to the residual. In particular, if we know an estimate for the rate of convergence
of the residual to zero, then we can evaluate the rate of convergence of a sequence of approximate
solutions to an exact solution.

The infimum of κ for which (1.1) holds is the regularity modulus, denoted by regF (x̄| ȳ); the
case when F is not metrically regular at x̄ for ȳ corresponds to regF (x̄| ȳ) = ∞.

The concept of metric regularity has its roots in the Banach open mapping principle: a linear
and bounded operator A : X → Y , denoted A ∈ L(X,Y ), is metrically regular (at any point in its
graph) if and only if A maps X onto Y . The regularity modulus of an A ∈ L(X,Y ) satisfies

regA = sup
y∈BY

d(0, A−1(y)),

where BY denotes the closed unit ball in the space Y . If in addition A−1 is single-valued, then
regA = ‖A−1‖. For set-valued mappings F : X →→ Y with closed convex graph, the metric regularity
is characterized through the classical Robinson-Ursescu theorem:

Theorem 1.1. (Robinson-Ursescu) A mapping F : X →→ Y with closed and convex graph is
metrically regular at x̄ for ȳ if and only if ȳ is in the interior of the range of F .

In this paper we evaluate the regularity modulus of mappings defined by semi-infinite constraint
systems. We start with the following simple example which will be used throughout the paper:
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Example 1.2. For fixed parameters u ∈ IRn and v ∈ IR consider the set-valued mapping

IRn 3 x 7→ F(uv)
(x) := uTx− v − IR+,

where T denotes the transposition (the elements of IRn are regarded as column vectors) and IR+ :=
[0,∞). Then, in particular, F−1

(uv)
(0) is the set of solutions of the single inequality uTx − v ≥ 0.

Consider any norm ‖·‖ in IRn and let ‖·‖∗ denote the dual norm, i.e. ‖u‖∗ := sup
{
uTx | ‖x‖ ≤ 1

}
.

For u 6= 0 we have

d(x, F−1

(uv)
(y)) =

[y − (uTx− v)]+
‖u‖∗

,

where the distance corresponds to the norm ‖ · ‖ and [a]+ denotes the positive part of a. Also, we
have

d(y, F(uv)
(x)) =

[
y − (uTx− v)

]
+
.

Then, directly from the definition (1.1) we obtain

(1.2) regF(uv)
(x̄|0) =





0 if uTx̄ > v,
1/‖u‖∗ if uTx = v and u 6= 0,
∞ if uTx̄ = v and u = 0.

There is a fast growing literature on metric regularity in variational analysis; recent overviews
to the topic can be found in [4], [11] and [24]. In this paper we closely follow the notation and
terminology of [24].

The metric regularity of a mapping F is known to be equivalent to two other properties: the
openness of linear rate of F and the Aubin property of the inverse F−1. The metric regularity of F
at x̄ for ȳ implies that for any neighborhood O of x̄, F−1(y) ∩ O 6= ∅ for all y sufficiently close to
ȳ. Also, if regF (x̄| ȳ) < ∞, then regF (x|y) < ∞ for all (x, y) ∈ gphF close to (x̄, ȳ).

For a function f : X → Y and a point x̄ ∈ int dom f , we denote by lipf(x̄) the Lipschitz
modulus of f at x̄,

lip f(x̄) = lim sup
x,x′→x̄, x6=x′

‖f(x) − f(x′)‖
‖x− x′‖ .

Also, recall that a function g : X → Y is strictly differentiable at x̄ ∈ int dom g with a strict
derivative mapping Dg(x̄) ∈ L(X,Y ) if

lip(g −Dg(x̄))(x̄) = 0.

A central result in the theory of metric regularity is a theorem which goes back to Lyusternik and
Graves, for more see, e.g., [3] and [11], which we will use here in the following form:

3



Theorem 1.3 (Lyusternik-Graves). Let F : X →→ Y be a set-valued mapping and (x̄, ȳ) ∈ gphF
at which gphF is locally closed. Let g : X → Y be a function which is strictly differentiable at x̄
with strict derivative Dg(x̄). Then

reg(F + g)(x̄| ȳ + g(x̄)) = reg(F (·) + Dg(x̄)(· − x̄))(x̄| ȳ).

The modern variants of the Lyusternik-Graves theorem give not only the invariance of the metric
regularity of a mapping F with respect to linearization of its smooth part, but also a bound for
the smallest perturbation g for which the mapping F + g is not metrically regular. Obtaining an
exact expression for the “radius” of metric regularity, as well as for other well-posedness properties,
is related to conditioning of mappings and goes back to a theorem by Eckart and Young [6] for
matrices. In optimization, the Eckart-Young theorem was extended in the framework of feasibility
of constraint systems in the pioneering work of Renegar [21]. Related theoretical results with
applications to various optimization problems have been recently obtained in a number of papers,
see e.g. [2], [19], [20], [25], [26], and [27]. A general estimate for the “distance to non-regularity” of
set-valued mappings was established in [4], as follows:

Theorem 1.4 (radius theorem for metric regularity). Consider a mapping F : X →→ Y and any
(x̄, ȳ) ∈ gphF at which gphF is locally closed. Then

(1.4) inf
g:X→Y

{
lip g(x̄)

∣∣∣F + g not metrically regular at x̄ for ȳ + g(x̄)
}

≥ 1

regF (x̄| ȳ) .

In addition, if either dimX < ∞ and dimY < ∞ or gphF is a closed and convex cone and (x̄, ȳ)
is the origin in X × Y , then

(1.5) inf
g:X→Y

{
lip g(x̄)

∣∣∣F + g not metrically regular at x̄ for ȳ + g(x̄)
}

=
1

regF (x̄| ȳ) .

Moreover, the infimum is unchanged if taken with respect to affine mappings g of rank one and
then lip g(x̄) is equal to the norm of the linear part of g.

As an application of this result, a characterization to the distance to infeasibility, as defined
by Renegar [21], was obtained in [4] via homogenization of the original mapping. Mordukhovich
[18] subsequently proved the equality (1.5) for mappings acting from an Asplund space to a finite-
dimensional space. Recently, Ioffe showed that in infinite-dimensions the inequality in (1.4) is
generally strict [12], but equality (1.5) still holds [13] when F is single-valued and the perturbation
is nonlinear. Results of this type for other related regularity properties of mappings, including
subregularity and strong regularity, are presented in [5].

In this paper we consider specific set-valued mappings acting from a finite-dimensional space to
subsets of the Banach space of continuous functions over a compact Hausdorff space, which describe
constraint systems in semi-infinite programming. The graphs of such mappings are closed convex
cones, hence, from Theorem 1.4, the radius equality (1.5) holds for them at the origin. By using
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the specifics of these mappings and following the path of the previous work of Cánovas et al. [1],
we derive a formula for their regularity moduli at any point in the graph and prove a corresponding
equality (1.5) with linear perturbations g. This result sharpens the inequality in (1.4) as equality
of the form (1.5) for basic models in optimization involving mappings acting in infinite-dimensional
spaces.

We consider a semi-infinite system in IRn of the form

(1.6)

{
a(t)Tx ≥ b(t) for all t ∈ T,
p(s)Tx = q(s) for all s ∈ S,

where T is a compact, possibly infinite, Hausdorff space, S is a finite set with cardinality m, where
m ≤ n, and such that S ∩ T = ∅, the functions a : T → IRn and b : T → IR are continuous on T ,
and p : S → IRn, q : S → IR are regarded as functions over a discrete domain.

Let C(T, IR) denote the space of functions f : T → IR that are continuous on T . The system
(1.6) can be described with the help of the following set-valued mapping F acting from IRn to the
subsets of C(T, IR) × IRS :

(1.7) IRn 3 x 7→ F(x) =

(
a(·)Tx
p(·)Tx

)
−
(

C(T, IR+)
0S

)
,

where C(T, IR+) is the set of continuous functions on T whose values are nonnegative scalars and
0S is the zero function on S. Then x ∈ IRn and a pair (b, q) ∈ C(T, IR) × IRS satisfy (b, q) ∈ F(x) if
and only if x is a solution of the system (1.6). Equivalently, F−1(b, q) is the set of feasible points of
(1.6). Here and further the functions a and p are fixed. The space C(T, IR) × IRS is equipped with
the product norm

‖(b, q)‖ := max {‖b‖∞, ‖q‖∞} ,

where ‖ · ‖∞ is used to denote the supremum norms for both C(T, IR) and IRS.
First, observe that gph F is a closed convex cone and hence, by the Robinson-Ursescu Theorem

(Theorem 1.1), the metric regularity of F at x̄ for (b, q) ∈ F(x̄) is equivalent to the condition
(b, q) ∈ int rgeF, that is, (1.6) is consistent for any (b′, q′) close to (b, q). Next, note that the
mapping F in (1.7) can be defined also as

IRn 3 x 7→ F(x) =

{
(b, q) ∈ C(T, IR) × IRS

∣∣∣∣
b(t) ∈ a(t)Tx− IR+ for t ∈ T
q(s) = p(s)Tx for s ∈ S

}
.

To give a ”pointwise representation” of this mapping we define the set T̃ := T ∪ S and introduce
the mapping

(1.8) T̃ × IRn 3 (v, x) 7→ F (v, x) =

{
w ∈ IR

∣∣∣∣
w ∈ a(v)Tx− IR+ for v ∈ T,
w = p(v)Tx for v ∈ S.

}
.
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Next, we study the relation between the regularity moduli of the mappings F and F .
To put this question in a more general perspective, let X and Y be Banach spaces with Y being

reflexive, let T̄ be a topological space, and let F : T̄ ×X →→ Y be a set-valued mapping. Define an
associated set-valued mapping F : X →→ C(T̄ , Y ) in the following way

(1.9) X 3 x 7→ F(x) =
{
y ∈ C(T̄ , Y )

∣∣ y(t) ∈ F (t, x) for t ∈ T̄
}
.

We will next show that, under certain hypotheses that hold in our context, the regularity modulus of
F is bounded from below by the supremum of the regularity moduli of F (t, ·) for t ∈ T̄ . Specifically,
we have the following result:

Theorem 1.5. Let (x̄, ȳ) ∈ gphF , where F is the set-valued mapping in (1.9) for a mapping F ,
and assume the following:

(a) There is a neighborhood O of x̄ such that for every (t, x) ∈ T̄ ×O the set F (t, x) is nonempty,
closed and convex;

(b) For each (t0, x) ∈ T̄ × O and for each u ∈ F (t0, x) there exists a function y ∈ C(T̄ , Y ) such
that y(t0) = u and y(t) ∈ F (t, x) for all t ∈ T̄ ;

(c) F is lower semicontinuous at (x̄, ȳ), meaning that for each sequence {xr} ⊂ X converging to
x̄, there exists a sequence {yr} converging to ȳ and such that yr ∈ F(xr), for all r = 1, 2, · · · .
Then,

(1.10) regF(x̄| ȳ) ≥ sup
t∈T̄

regF (t; x̄| ȳ(t)),

where, for any given t ∈ T̄ , by regF (t; x̄| ȳ(t)) we denote the regularity modulus of F (t, ·) at x̄ for
ȳ(t).

Proof. On the contrary, assume that there is a positive γ such that

regF(x̄| ȳ) < γ < sup
t∈T̄

regF (t; x̄| ȳ(t)).

Then for some t0 ∈ T̄ , γ < regF (t0; x̄| ȳ(t0)). Consequently, there exist sequences xr → x̄ and
ur → ȳ(t0) such that

(1.11) d(xr, F (t0, ·)−1(ur)) > γd(ur, F (t0, x
r)) for r = 1, 2, · · · ,

where F (t0, ·)−1 is the inverse of F (t0, ·). Without loss of generality, let xr ∈ O for all r. Since
Y is reflexive and the values of F are closed convex sets (condition (a)), for each r there exists
ūr ∈ F (t0, x

r) satisfying

(1.12) ‖ūr − ur‖ = d(ur, F (t0, x
r)).

From the assumption (c) there exists a sequence of continuous functions zr converging uniformly
to ȳ and with zr ∈ F(xr) for all r. Since zr(t0) ∈ F (t0, x

r) for any r, from (1.12) we have

lim
r→∞

‖ūr − ur‖ ≤ lim
r→∞

‖zr(t0) − ur‖ = 0.
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Hence, ūr → ȳ(t0) as r → ∞. Then, by the continuous selection assumption (b), for every r we can
find a function ỹr ∈ C(T̄ , Y ) such that

ỹr(t0) = ūr and ỹr(t) ∈ F (t, xr) for all t ∈ T̄ .

Making use of Urysohn’s lemma, for each r = 1, 2, · · · , we construct a continuous function θr : T̄ →
[0, 1] satisfying

θr(t) :=

{
1 if ‖ỹr(t) − zr(t)‖ ≤ ‖ỹr(t0) − zr(t0)‖,
0 if ‖ỹr(t) − zr(t)‖ ≥ ‖ỹr(t0) − zr(t0)‖ + 1

r
.

For r = 1, 2, · · · define the functions

ẑr(t) = θr(t) ỹr(t) + (1 − θr(t)) zr(t) t ∈ T̄ ,

Since θr(t0) = 1, for all r we have
ẑr(t0) = ỹr(t0) = ūr.

Noting that limr→∞ ‖ūr − zr(t0)‖ = 0 and that zr → ȳ uniformly in T̄ , the estimate

‖ẑr(t)− ȳ(t)‖ ≤ θr(t)‖ỹr(t) − zr(t)‖ + ‖ zr(t)− ȳ(t)‖
< ‖ỹr(t0) − zr(t0)‖ +

1

r
+ ‖ zr(t) − ȳ(t)‖

= ‖ūr − zr(t0)‖ +
1

r
+ ‖ zr(t) − ȳ(t)‖ for all t ∈ T̄

yields that the sequence ẑr converges uniformly in T̄ to ȳ as r → ∞. Since F (t, xr) is convex for
any t ∈ T̄ and r (condition (a)) we conclude that ẑr ∈ F(xr).

Consider now the sequence of continuous functions

ŷr(t) := ẑr(t) − (ūr − ur), t ∈ T̄ , r = 1, 2, · · · .

Since limr→∞ ‖ūr − ur‖ = 0, the sequence ŷr is uniformly convergent to ȳ. Since ŷr(t0) = ur and
F−1(ŷr) ⊂ F (t0, ·)−1(ur), we have

(1.13) d(xr, F (t0, ·)−1(ur)) ≤ d(xr,F−1(ŷr)).

Moreover, since d(ŷr, ẑr) = ‖ūr−ur‖, we obtain d(ŷr,F(xr)) ≤ ‖ūr−ur‖. This inequality combined
with (1.11), (1.12) and (1.13) gives us

d(ŷr,F(xr)) <
1

γ
d(xr, F (t0, ·)−1(ur)) ≤ 1

γ
d(xr,F−1(ŷr)) for all r = 1, 2, · · · .

This contradicts the assumption regF(x̄| ȳ) < γ.
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Observe that the conditions (a), (b) and (c) in Theorem 1.5 hold for the mappings F in (1.7)
and the corresponding mapping F in (1.8) for the linear semi-infinite inequality system. Hence,
from (1.10) we obtain

reg F(x̄| ȳ) ≥ sup
v∈T̃

regF (v; x̄| ȳ(v)).

The following two examples show that this inequality is strict, in general. In the first example the
left hand side is infinite while the right hand side is finite. In the second example both sides are
finite but different.

Example 1.6. Consider the scalar semi-infinite inequality

tx ≥ t2 − 1 for all t ∈ [−1, 1].

Let ȳ(t) = t2 − 1, t ∈ [−1, 1]. The associated mapping defined in (1.8) is

F (t, x) := tx− IR+

and then, from (1.9),

F(x) := {y ∈ C([−1, 1], IR) | tx ≥ y(t) for all t ∈ [−1, 1]}.

From the formula (1.2) we have

regF (t; 0| ȳ(t)) =

{
0 if t ∈ (−1, 1),
1 if t = −1 or 1.

However, regF(0| ȳ) = ∞. Indeed, let yr(t) = t2 − 1 + 1
r
, for all t ∈ [−1, 1] and observe that for

a sufficiently large r, the function yr will be in any C([0, 1], IR) neighborhood of ȳ. On the other
hand, the set

F−1(yr) =
{
x ∈ IR | tx ≥ t2 − 1 +

1

r
for all t ∈ [−1, 1]

}

is empty for any r. Hence, F is not metrically regular at 0 for ȳ.

Example 1.7. Consider the semi-infinite inequality

(1 − t)x1 + (−1 + 2t)x2 ≥ t2 − t for all t ∈ [0, 1],

for which

F (t, x) = (1 − t)x1 + (−1 + 2t)x2 − IR+.

Let ȳ(t) = t2 − t, t ∈ [0, 1]. Assuming that IR2 is endowed with the Euclidean norm and using (1.2)
we obtain

regF (t; 02| ȳ(t)) =





0, if t ∈ (0, 1),
1√
2
, if t = 0,

1 if t = 1,
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where 02 is the origin in IR2. To obtain a lower bound for regF(02 | ȳ) for the associated mapping
F defined in (1.9) we consider the sequence of functions yr(t) = t2 − t + 1

r
, t ∈ [0, 1], r ∈ IR. This

sequence converges to ȳ in C([0, 1], IR) as r → ∞. We have

F−1(yr) =
{
x ∈ IR2 | x1 − x2 ≥

1

r
, x2 ≥

1

r

}
.

The inequality (1− t)x1 + (−1 + 2t)x2 ≥ 1
r
+ t2 − t, for any t ∈ (0, 1), is always satisfied when both

inequalities x1 − x2 ≥ 1
r

and x2 ≥ 1
r

hold, and then elementary calculation gives us

d(02,F−1(yr)) =

√
5

r
.

Furthermore,

F(02) =
{
y ∈ C([0, 1], IR) | y(t) ≤ 0, for t ∈ [0, 1]

}

and hence

d(yr,F(02)) =
1

r
for all r.

Thus, regF(02 | ȳ) ≥
√

5. From the formula for the regularity modulus derived in the following
section we will see that in this example regF(02 | ȳ) is actually equal to

√
5.

In the following Section 2 we derive a formula for the modulus of metric regularity of the semi-
infinite system (1.6). In view of Proposition 1.5 and the examples above, the main observation is
that in order to evaluate the regularity modulus one has to consider not only the active constraints
at the reference point but also their convex combinations. Then in Section 3 we prove a radius
theorem for the metric regularity of the associated mapping (1.7) of the form of the equality (1.5),
and apply this result to derive a formula for the distance to infeasibility for the semi-infinite system
with inequality constraints only. In Section 4 we give an extension of the result obtained for a
nonlinear semi-infinite constraint system by using the Lyusternik-Graves theorem (Theorem 1.3).

2 Metric regularity of linear semi-infinite systems

Consider the linear semi-infinite system (1.6),

{
a(t)Tx ≥ b(t) for all t ∈ T,
p(s)Tx = q(s) for all s ∈ S,

and the associated mapping F in (1.7). Recall that the Slater constraint qualification (SCQ)
condition holds when the vectors p(s), s ∈ S, are linearly independent and there exists a point
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x̂ ∈ IRn satisfying a(t)Tx̂ > b(t), t ∈ T, p(s)Tx̂ = q(s), s ∈ S. Also, recall the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ) condition: denoting the set of indices associated with
active inequalities at x̄ ∈ F−1(b, q) by

T (x̄) := {t ∈ T | a(t)Tx̄ = b(t)},

we say that the EMFCQ condition is satisfied at (x̄, (b, q)) when the vectors p(s), s ∈ S, are linearly
independent and either T (x̄) = ∅ or the following system has a solution

{
a(t)Ty > 0 for all t ∈ T (x̄),
p(s)Ty = 0 for all s ∈ S.

In [10], p. 311, the SCQ condition is called the strong Slater constraint qualification. The EMFCQ
condition was introduced in the semi-infinite context in [14] based on a condition given in [9] (see
[15] for a parametric version). The relationship between these conditions, the Robinson constraint
qualification [22] and the metric regularity of the feasible set mapping in parametric nonlinear
semi-infinite programming is explored in detail in [16].

The following set plays a central role in our analysis:

(2.1) E(b, q) :=

{∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)∣∣∣∣
λ ∈ IR

(T )
+ , µ ∈ IRS

∑
t∈T λ(t) +

∑
s∈S |µ(s)| = 1

}
,

where IR
(T )
+ is the set of all functions λ : T → IR+ with finite support, that is, taking nonnegative

values only at finitely many points in T .
In the following theorem we give a summary of various properties that are equivalent to the

metric regularity of the mapping F considered. We apply results from [16] but also exhibit new
conditions which are used in the following sections. Theorem 2.1 is an adapted to the present setting
version of Theorem 6.1 in [8]; for completeness, we give a condensed proof with a few shortcuts.
Here and further, for a given set A we denote by coA, spanA and coneA the convex hull of A, the
linear subspace generated by A and the conical convex hull of A, respectively.

Theorem 2.1. For (b, q) ∈ rgeF the following are equivalent:
(i) For any x̄ ∈ F−1(b, q) the mapping F is metrically regular at x̄ for (b, q);
(ii) 0n+1 /∈ E(b, q);

(iii) 0n+1 /∈ co

{(
a(t)

b(t)

)
, t ∈ T

}
+span

{(
p(s)

q(s)

)
, s ∈ S

}
and the vectors p(s), s ∈ S, are linearly

independent;
(iv) The system (1.6) satisfies the EMFCQ condition at any x̄ ∈ F−1(b, q);
(v) The system (1.6) satisfies the SCQ condition;
(vi) F−1 is lower semicontinuous at (b, q).

Proof. (i)⇒(ii) : According to the Robinson-Ursescu theorem, (b, q) ∈ int rgeF and we can take
ε > 0 such that ‖(b, q) − (b1, q1)‖ < ε implies (b1, q1) ∈ rgeF. Reasoning by contradiction, assume

10



the existence of λ = (λ(t))t∈T ∈ IR
(T )
+ and α(s) ∈ IR, s ∈ S, such that

∑
t∈T λ(t) +

∑
s∈S |α(s)| = 1

and

0n+1 =
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
α(s)

(
p(s)

q(s)

)
.

Let us consider (b1, q1) defined as follows:

b1(t) = b(t) +
ε

2
, t ∈ T, q1(s) = q(s) + signα(s)

ε

2
, s ∈ S.

Then we have ‖(b, q)− (b1, q1)‖ = ε/2 and

∑

t∈T
λ(t)

(
a(t)

b1(t)

)
+
∑

s∈S
α(s)

(
p(s)

q1(s)

)
=

ε

2

(
0n
1

)
.

The generalized Gale alternative theorem ([8], Corollary 3.1.1) leads to the contradiction (b1, q1) /∈
rgeF.

(ii)⇒(iii) : First, we prove that

0n+1 /∈ co

{(
a(t)

b(t)

)
, t ∈ T

}
+ span

{(
p(s)

q(s)

)
, s ∈ S

}
.

Reasoning by contradiction, assume that

0n+1 =
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
α(s)

(
p(s)

q(s)

)
,

for certain λ = (λ(t))t∈T ∈ IR
(T )
+ with

∑
t∈T λ(t) = 1 and α(s) ∈ IR, s ∈ S. Dividing in the latter

equality by
∑

t∈T λ(t) +
∑

s∈S |α(s)| we conclude that 0n+1 ∈ E (b, q) , thus contradicting (ii) .
Now, let us prove that the vectors p(s), s ∈ S, are linearly independent. Otherwise we could

write
0n =

∑

s∈S
α(s)p(s) with α :=

∑

s∈S
|α(s)| > 0.

Then, multiplying by any x̄ ∈ F−1 (b, q) , we have

0 =
∑

s∈S

α(s)

α
p(s)Tx̄ =

∑

s∈S

α(s)

α
q(s)

and therefore

0n+1 =
∑

s∈S

α(s)

α

(
p(s)

q(s)

)
∈ E (b, q) ,

11



contradicting (ii) .
(iii)⇒(iv) : Given x̄ ∈ F−1(b, q) consider the non-trivial case T (x̄) 6= ∅. We will first show that

0n /∈ co {a(t), t ∈ T (x̄)} + span {p(s), s ∈ S} .

On the contrary, assume that there exists λ ∈ IR
(T (x̄))
+ such that

∑
t∈T (x̄) λ(t) = 1 and α(s) ∈ IR,

s ∈ S, satisfying

0n =
∑

t∈T (x̄)

λ(t)a(t) +
∑

s∈S
α(s)p(s).

Multiplying this equality by x̄ one obtains

0 =
∑

t∈T (x̄)

λ(t)b(t) +
∑

s∈S
α(s)q(s),

which together with the preceding equation leads to contradiction with (iii). Now, the so-called
Generalized Motzkin Alternative Theorem ([8], Theorem 3.5) applies, to conclude that the system

{a(t)Ty > 0, t ∈ T (x̄); p(s)Ty = 0, s ∈ S}

has a solution and hence the EMFCQ condition holds at x̄.
(iv)⇒(v) : Pick a feasible point x̄ ∈ F−1(b, q). If T (x̄) = ∅, the point x̄ satisfies the requirement

of the SCQ condition. Let T (x̄) 6= ∅ and take a solution ȳ of the system

{a(t)Ty > 0, t ∈ T (x̄); p(s)Ty = 0, s ∈ S}.

If we replace the inequality constraints by the unique convex constraint f(x) ≤ 0 with

f(x) := sup
t∈T

{b(t)− a(t)Tx},

we then can apply an argument similar to the one in the proof of in the implication (ii)⇒(i) of
Theorem 7.2 in [8]. Specifically, Valadier’s formula (see e.g. Theorem A.7 in [8]) yields the following
expression for the subdifferential of f at x̄:

∂f (x̄) = co {−a(t), t ∈ T (x̄)} ,

and the directional derivative f ′(x̄; ȳ) satisfies

f ′(x̄; ȳ) = sup
{
uTȳ | u ∈ ∂f (x̄)

}
= sup

{
−a(t)Tȳ | t ∈ T (x̄)

}
< 0,

taking into account the compactness of T (x̄) . Thus, if λ > 0 is small enough, one has f(x̄+λȳ) < 0,
which means that x̄+ λȳ is a Slater point of (1.6).
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(v)⇒(vi) : Choose an open set U ⊂ IRn such that U ∩ F−1(b, q) 6= ∅; we will now prove the
existence of ε > 0 such that ‖(b, q) − (b′, q′)‖ < ε implies U ∩ F−1(b′, q′) 6= ∅. To do so, take
x̃ ∈ U ∩ F−1(b, q) and any Slater vector x̂ for (1.6), and observe that any point in the form
x(λ) := λx̂+(1−λ)x̃, λ ∈ (0, 1] satisfies the SCQ condition. Let λ0 ∈ (0, 1] be such that x(λ0) ∈ U.
Because of the continuity of a(·) and b(·) and the compactness of T , there exists ρ > 0 such that
a(t)Tx(λ0) ≥ b(t) + ρ for all t ∈ T . Hence, there also exists ε1 > 0 such that the combination of
‖x− x(λ0)‖ < ε1 and ‖b− b′‖∞ < ε1 implies

(2.2) x ∈ U and a(t)Tx ≥ b′(t) for all t ∈ T.

In the case that m (the cardinality of S) is less than n, since p(s), s ∈ S, are linearly independent,
we can add vectors pm+1, · · · , pn such that {p(s), s ∈ S; pm+1, · · · , pn} is a basis of IRn. Define
qm+j := (pm+j )Tx(λ0), j = 1, · · · , n−m. Then the system

{
p(s)Tx = q′(s), s ∈ S,
(pm+j )Tx = qm+j, j = 1, · · · , n−m,

has a unique solution x′ which depends continuously on q′. This implies the existence of ε2 > 0
such that ‖x′ − x(λ0)‖ < ε1 if ‖q − q′‖∞ < ε2. In conclusion, if ‖(b, q)− (b′, q′)‖ < ε := min{ε1, ε2} ,
from (2.2) we have that x′ ∈ U ∩ F−1(b′, q′).

(vi)⇒(i) : Note that the lower semicontinuity of F−1 at (b, q) obviously yields (b, q) ∈ int rgeF,
hence the metric regularity of F follows from Robinson-Ursescu Theorem.

In the remaining part of this section we derive an explicit formula for the modulus of metric
regularity of the mapping F defined in (1.7) at x̄ for (b, q). We relate reg F(x̄|(b, q)) with the
modulus of metric regularity of the mappings associated with each one of the linear inequalities
whose coefficient vectors belong to E(b, q). In further lines we refer to the sets

N(b) := cone

{(
a(t)

b(t)

)
, t ∈ T

}
and L(q) := span

{(
p(s)

q(s)

)
, s ∈ S

}
.

Lemma 2.2. Let (b, q) ∈ C(T, IR) × IRS . Then
(i) The set E(b, q) is compact;
(ii) If the constraint system (1.6) satisfies the SCQ condition, then the associated cones

N(b) + L(q) and N(b) + L(q) + cone

{(
0n
−1

)}

are closed.

Proof. (i) Recall that an element of E(b, q) has the form

∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)
,
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with λ ∈ IR
(T )
+ , µ ∈ IRS ,

∑
t∈T λ(t) +

∑
s∈S |µ(s)| = 1. By Carathéodory’s theorem we can assume

that the cardinality of the support set of λ is not greater than n + 1. Denote the corresponding
values of λ by λi, i = 1, · · · , n + 1. The set

K :=
{

(λ1, · · · , λn+1, µ1, · · · , µm) ∈ IRn+1
+ × IRm |

n+1∑

i=1

λi +

m∑

j=1

|µj | = 1
}

is a compact subset of IRn+1+m. Consider the function

f : K ×
{(

a(t)

b(t)

)
, t ∈ T

}n+1

→ IRn+1

given by

f

(
λ1, · · · , λn+1, µ1, · · · , µm;

(
a(t1)

b(t1)

)
, · · · ,

(
a(tn+1)

b(tn+1)

))
=

n+1∑

i=1

λi

(
a(ti)

b(ti)

)
+

m∑

j=1

µj

(
p(sj)

q(sj)

)
,

where we write {s1, · · · , sm} := S. Clearly, f is a continuous function defined on a compact set and
its image is E(b, q). Hence, E(b, q) is compact.

(ii) Since {
(
a(t)
b(t)

)
, t ∈ T} is a compact set, its convex hull is also compact, and the existence

of a Slater element guarantees that 0n+1 does not belong to the convex hull. Then, N(b) is closed
according to [23, Corollary 9.6.1]. Moreover, the existence of a Slater element yields N(b)∩ L(q) =
{0n+1}, and then [23, Corollary 9.1.3] applies to obtain that N(b)+L(q) is closed. Finally, we apply
[8, Theorem 5.3(ii)] to conclude that the associated characteristic cone is closed as well.

Recall that the Farkas Lemma applied to the linear semi-infinite system (1.6) says that the
inequality aTx ≥ b is a consequence of the system (1.6) (when consistent) if and only if

(
a
b

)
∈ cl

(
N(b) + L(q) + cone

{(
0n
−1

)})
.

Lemma 2.3. Let (x̄, (b, q)) ∈ gph F and assume that F is metrically regular at x̄ for (b, q). Then,
given z ∈ IRn, one has

(2.3) d
(
z,F−1 (b, q)

)
= sup

(uv)∈N(b)+L(q)

d (z,H (u, v)) ,

where H (u, v) :=
{
x ∈ IRn | uTx ≥ v

}
. Moreover, when z /∈ F−1 (b, q) , the supremum is attained

at (ū, ūTẑ), where ẑ is a projection of z on F−1 (b, q) and ū satisfies ‖ū‖∗ = 1, and
(i) ūTx ≥ ūTẑ for all x ∈ F−1 (b, q);
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(ii) ūT (ẑ − z) = ‖ẑ − z‖ .
Proof. First, consider the case z ∈ F−1 (b, q) . If

(
u

v

)
∈ N (b) + L (q) , there exist λ ∈ IR

(T )
+ and

µ ∈ IRS such that
(
u

v

)
=
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)
.

Multiplying by
(

z

−1

)
we obtain z ∈ H(u, v), and the aimed equality holds trivially. Assume z /∈

F−1(b, q). In order to prove the inequality ≥ in (2.3), observe that for all
(
u

v

)
∈ N (b) + L (q), the

inequality uTx ≥ v is a consequence of the consistent constraint system (1.6). Then F−1(b, q) ⊂
H(u, v) which yields d(z,F−1(b, q)) ≥ d(z,H(u, v)).

To prove the opposite inequality we use the following characterization of projections (for the “if”
part, see [17], p. 136, while the “only if” part can be found in [1], Lemma 9). Let A be a non-empty
closed convex set in IRn, which is endowed with an arbitrary norm ‖·‖, and let z ∈ IRn \A. Then,
ẑ ∈ A is a projection (best approximation) in IRn of z in A (i.e., ‖ẑ − z‖ = d (z,A)) if and only
if there exists a vector ū ∈ IRn, which satisfies the conditions (i) and (ii) in the statement of the
lemma.

Let ẑ ∈ IRn be a projection of z in F−1 (b, q) and let ū, ‖ū‖∗ = 1, satisfy the conditions (i)
and (ii) in the statement of the lemma. Appealing to the Farkas Lemma and the closedness of the
characteristic cone (according to Lemma 2.2), we write

(
ū

ūTẑ

)
=
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)
+ γ

(
0n
−1

)
,

for certain λ ∈ IR
(T )
+ , µ ∈ IRS and γ ≥ 0. Multiplying both sides in this equality by

(
ẑ

−1

)
we conclude

that γ = 0, and hence (
ū

ūTẑ

)
∈ N(b) + L(q).

Moreover,

d
(
z,H

(
ū, ūTẑ

))
=

|ūT (z − ẑ) |
‖ū‖∗

= ‖z − ẑ‖ = d
(
z,F−1 (b, q)

)
.

Thus, we obtain

d
(
z,F−1 (b, q)

)
≤ sup

(uv)∈N(b)+L(q)

d (z,H (u, v))

and the proof is complete.

The following theorem provides a formula for reg F(x̄|(b, q)). We adopt the conventions inf ∅ =
∞, 1/∞ = 0 and 1/0 = ∞ and use the notation of Example 1.2.
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Theorem 2.4. Let (x̄, (b, q)) ∈ gph F. Then,

(2.4) reg F(x̄|(b, q)) = sup
(uv)∈E(b,q)

regF(uv)
(x̄|0).

Proof. If F is not metrically regular at x̄ for (b, q) , then reg F(x̄|(b, q)) = ∞ and, at the same
time, 0n+1 ∈ E (b, q) by Theorem 2.1. Then, using the formula (1.2) we have

sup
(uv)∈E(b,q)

regF(uv)
(x̄|0) = regF(0n

0 )(x̄|0) = ∞.

Assume that F is metrically regular at x̄ for (b, q) .

Proof of the inequality ≤ in (2.4). On the contrary, assume that there exists α > 0 such that

(2.5) reg F(x̄|(b, q)) > α > sup
(uv)∈E(b,q)

regF(uv)
(x̄|0).

The first inequality in (2.5) yields that there exist sequences {xr} converging to x̄ and {(br, qr)}
converging to (b, q) such that, for each r,

(2.6) d
(
xr,F−1 (br, qr)

)
> α d ((br, qr) ,F (xr)) .

Note that, by the metric regularity assumption, for r large enough (say r ≥ r0) one has (br, qr) ∈
int rgeF, and F will be metrically regular at every feasible point of (1.6) with right-hand side (br, qr).
Then, since under the current hypotheses xr /∈ F−1 (br, qr) , Lemma 2.3 yields

(2.7) d
(
xr,F−1 (br, qr)

)
= d

(
xr,H(ur, (ur)Tx̂r)

)
,

where x̂r is a projection of xr on F−1(br, qr) and

(
ur

(ur)T x̂r

)
∈ N (br) + L (qr) ,

where ur, with ‖ur‖∗ = 1, satisfies the conditions (i) and (ii) in the statement of Lemma 2.3. Write

(2.8)

(
ur

(ur)T x̂r

)
=
∑

t∈T
λr(t)

(
a(t)

br(t)

)
+
∑

s∈S
µr(s)

(
p(s)

qr(s)

)

for some {λr} ⊂ IR
(T )
+ and {µr} ⊂ IRS.

We organize the rest of the proof of the inequality ≤ in (2.4) in four steps.
Step 1. Denoting

γr :=
∑

t∈T
λr(t) +

∑

s∈S
|µr(s)|
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we will prove that
α < γr for all r ≥ r0.

Multiplying both sides in (2.8) by
(−xr

1

)
, we have

(
ur

(ur)Tx̂r

)T(−xr

1

)
=
∑

t∈T
λr(t)(br(t)− a(t)Txr) +

∑

s∈S
µr(s)(qr(s) − p(s)Txr)

≤ (
∑

t∈T
λr(t)) sup

t∈T

[
br(t) − a(t)Txr

]
+

+ (
∑

s∈S
|µr(s)|) sup

s∈S
|qr(s) − p(s)Txr|

≤ (
∑

t∈T
λr(t) +

∑

s∈S
|µr(s)|)d((br, qr),F(xr)),

also taking into account that

(2.9) d ((br, qr) ,F (xr)) = max

{
sup
t∈T

[br(t) − a(t)Txr]+, sup
s∈S

|qr(s) − p(s)Txr|
}

;

that is,

d ((br, qr) ,F (xr)) ≥ γ−1
r (ur)

T
(x̂r − xr) .

Hence, having in mind (2.6) and (2.7), we obtain

(ur)T (x̂r − xr)

‖ur‖∗
= d

(
xr,H(ur, (ur)Tx̂r)

)
> αγ−1

r (ur)T (x̂r − xr)

which yields
αγ−1

r < 1, for all r ≥ r0.

Step 2. The sequence {x̂r} converges to x̄.
The lower semicontinuity of F−1 at (b, q) (Theorem 2.1) yields the existence of {zr} converging

to x̄, with zr ∈ F−1 (br, qr) for all r ≥ r0. Hence, by the triangle inequality,

‖x̄− x̂r‖ ≤ ‖x̄− xr‖ + ‖xr − x̂r‖ ≤ ‖x̄− xr‖ + ‖xr − zr‖ → 0 as r → ∞,

hence the conclusion.

Step 3. The sequence {γr} is bounded.
On the contrary, assume that γr → ∞ as r → ∞ (for some subsequence). Then

0n+1 = lim
r→∞

1

γr

(
ur

(ur)
T
x̂r

)
= lim

r→∞

∑

t∈T

λr(t)

γr

(
a(t)

br(t)

)
+
∑

s∈S

µr(s)

γr

(
p(s)

qr(s)

)

= lim
r→∞

{∑

t∈T

λr(t)

γr

(
a(t)

b(t)

)
+
∑

s∈S

µr(s)

γr

(
p(s)

q(s)

)}

+ lim
r→∞

{
∑

t∈T

λr(t)

γr

(
0n

br(t) − b(t)

)
+
∑

s∈S

µr(s)

γr

(
0n

qr(s) − q(s)

)}
.
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The last limit is equal to zero, hence, by the closedness of E (b, q) (Lemma 2.2) we obtain 0n+1 ∈
E (b, q) contradicting, via Theorem 2.1, the assumed metric regularity.

Step 4. Completion of the proof of ≤ in (2.4).
Since {γr} is bounded, we may assume without loss of generality that it converges to certain

γ ≥ α > 0 (see Step 1). Also, since ‖ur‖∗ = 1, we assume that ur → u as r → ∞. Thus, taking
into account (2.8) we obtain

1

γ

(
u

uTx̄

)
= lim

r→∞

1

γr

(
ur

(ur)
T
x̂r

)
∈ E (b, q) ,

by using the closedness of E (b, q) and following an argument similar to the proof of Step 3. In such
a way, we have

1

γ

(
u

uTx̄

)
∈ E (b, q) with

1

γ
u 6= 0n and γ ≥ α.

Therefore, according to (1.2) we have

regF 1

γ (
u

uTx̄)
(x̄ | 0) = ‖u/γ‖−1

∗ = γ ≥ α,

which contradicts the assumption (2.5). Hence, we have ≤ in (2.4).

Proof of the inequality ≥ in (2.4).
On the contrary, suppose that there exists α > 0 such that

(2.10) reg F(x̄|(b, q)) < α < sup
(uv)∈E(b,q)

regF(uv)
(x̄|0) .

Then there exist
(
ū

v̄

)
∈ E (b, q) with ūTx̄ = v̄ (otherwise regF(ūv̄)

(x̄|0) = 0), and two sequences {xr}
converging to x̄ and {βr} converging to 0 such that

(2.11) d

(
xr, F−1

(ūv̄)
(βr)

)
> αd

(
βr, F(ūv̄)

(xr)
)
, for r = 1, 2, · · · .

Next, we construct two sequences, {br} ⊂ C (T, IR) and {qr} ⊂ IRS such that {(br, qr)} converges
to (b, q) ,

(2.12) d
(
xr,F−1 (br, qr)

)
≥ d

(
xr, F−1

(ūv̄)
(βr)

)
for all r,

and

(2.13) d ((br, qr) ,F (xr)) = d
(
βr, F(ūv̄)

(xr)
)

for all r.
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The first inequality of (2.10) implies that for r large enough

(2.14) d
(
xr,F−1 (br, qr)

)
≤ αd ((br, qr) ,F (xr)) ,

and then the combination of (2.11), (2.12), (2.13) and (2.14) leads to absurd, inasmuch for r large
enough,

αd ((br, qr) ,F (xr)) ≥ d
(
xr,F−1 (br, qr)

)
≥ d

(
xr, F−1

(ūv̄)
(βr)

)

> α d
(
βr, F(ūv̄)

(xr)
)

= αd ((br, qr) ,F (xr)) .

Write

(2.15)

(
ū

v̄

)
=
∑

i∈I
λi

(
a (ti)

b (ti)

)
+
∑

j∈J
µj

(
p (sj)

q (sj)

)
,

with λi > 0, i ∈ I, µj 6= 0, j ∈ J, and
∑

i∈I λi +
∑

j∈J |µj| = 1, where I and J are finite index sets,

possibly (but not simultaneously) empty. Multiplying both sides in (2.15) by
(

x̄

−1

)
we have

0 = ūTx̄− v̄ =
∑

i∈I
λi

(
a (ti)

T x̄− b (ti)
)
.

Since λi > 0 and a (ti)
T x̄− b (ti) ≥ 0 for all i ∈ I, we obtain

a(ti)
Tx̄ = b(ti), i ∈ I.

We will obtain (2.12) and (2.13) if {br} and {qr} are constructed in such a way that

(2.16)
br(t) ≤ βr + v̄ + (a(t)− ū)T xr for all t ∈ T,
|qr(s) − p(s)Txr| ≤ βr + v̄ − ūTxr for all s ∈ S,

and

(2.17)
br (ti) = βr + v̄ + (a (ti) − ū)

T
xr for all i ∈ I,

qr (sj) = p (sj)
T xr + (signµj)

(
βr + v̄ − ūTxr

)
for all j ∈ J.

Note that, since xr /∈ F−1

(ūv̄)
(βr) from (2.11), one has βr + v− ūTxr > 0 for all r. More precisely, from

(2.9) and the fact that d(βr, F(ūv̄)
(xr)) = βr + v̄ − ūTxr, (2.16) yields

d ((br, qr) ,F (xr)) ≤ d
(
βr, F(ūv̄)

(xr)
)
.

19



The equality then comes from (2.17).
In order to establish (2.12) we will show that

(2.18)
∑

i∈I
λi

(
a (ti)

br (ti)

)
+
∑

j∈J
µj

(
p (sj)

qr (sj)

)
=

(
ū

v̄ + βr

)
.

Indeed,
∑

i∈I λia (ti) +
∑

j∈J µjp (sj) = ū comes from (2.15). Moreover, applying (2.17), we have

∑

i∈I
λib

r (ti) +
∑

j∈J
µjq

r (sj)

=
∑

i∈I
λia (ti)

T
xr +

∑

i∈I
λi

(
βr + v̄ − ūTxr

)

+
∑

j∈J
µjp (sj)

T xr +
∑

j∈J
µj (sign µj)

(
βr + v̄ − ūTxr

)

=

(
∑

i∈I
λia (ti) +

∑

j∈J
µjp (sj)

)T

xr +

(
∑

i∈I
λi +

∑

j∈J
|µj|
)
(
βr + v̄ − ūTxr

)

= ūTxr + βr + v̄ − ūTxr = βr + v̄.

The equality (2.18) together with Farkas Lemma yield that ūTx ≥ βr + v̄ is a consequence of the
system {a(t)Tx ≥ br(t), t ∈ T ; p(s)Tx = qr(s), s ∈ S}, and hence (2.12) is guaranteed.

We now construct (br, qr) verifying (2.16) and (2.17). We know that a(t)Tx̄ ≥ b(t), for all t ∈ T,
a (ti)

T x̄ = b (ti) , i ∈ I, and p(s)Tx̄ = q(s), for all s ∈ S. Observe that, taking into account that
ūTx̄ = v̄, we have

|(βr + v̄ + (a(t)− ū)Txr) − a(t)Tx̄|
≤ |βr| + |ūT(x̄− xr)| + |a(t)T(xr − x̄)|
≤ |βr| + ‖ū‖∗‖xr − x̄‖ + supt∈T ‖a(t)‖∗‖xr − x̄‖ =: ε1

r,

and

(2.19)
|(p(s)Txr ± (βr + v̄ − ūTxr)) − p(s)Tx̄|

≤ |βr| + ‖ū‖∗ ‖xr − x̄‖ + maxs∈S ‖p(s)‖∗ ‖xr − x̄‖ =: ε2
r.

Let εr := max {ε1
r, ε

2
r} for all r, then limr εr = 0. The sequence {br} is constructed as follows. From

the preceding inequalities, we have

(2.20) a(t)Tx̄− εr ≤ βr + v̄ + (a(t) − ū)T xr ≤ a(t)Tx̄ + εr for all t ∈ T.

Let

A :=
{
t ∈ T | a(t)Tx̄− εr ≤ b(t) ≤ a(t)Tx

}
⊃ {ti, i ∈ I} ,
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and

B :=
{
t ∈ T | a(t)Tx̄− 2εr ≥ b(t)

}
.

It is clear that A and B are disjoint compact (possibly empty) subsets of T . By using Urysohn’s
Lemma, we find ϕ ∈ C (T, [0, 1]) such that

ϕ(t) =

{
1, if t ∈ A,
0, if t ∈ B.

Define

(2.21) br(t) :=
(
βr + v̄ + (a(t)− ū)T xr

)
ϕ(t) + b(t) (1 − ϕ(t)) .

If t ∈ B, then br(t) = b(t). If t /∈ B, one has

b(t) ∈ (a(t)Tx− 2εr, a(t)
Tx̄]

and

βr + v̄ + (a(t)− ū)T xr ∈
[
a(t)Tx̄− εr, a(t)

Tx̄+ εr
]
.

Hence (2.21) implies
br(t) ∈

(
a(t)Tx̄− 2εr, a(t)

Tx̄ + εr
]
,

which in turn yields

|br(t) − b(t)| ≤ 3εr, for all t ∈ T ; that is, ‖br − b‖∞ ≤ 3εr.

Moreover, for t ∈ A (in particular for t = ti, i ∈ I) we have

br(t) = βr + v̄ + (a(t)− ū)
T
xr.

For t ∈ B one obtains

br(t) = b(t) ≤ a(t)Tx̄− 2εr ≤ a(t)Tx− εr ≤ βr + v̄ + (a(t)− ū)T xr.

Finally, for t ∈ T \ (A ∪ B) we have

b(t) < a(t)Tx̄− εr ≤ βr + v̄ + (a(t)− u)T xr,

and then (2.21) yields

br(t) ≤ βr + v̄ + (a(t)− ū)
T
xr.
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Therefore, the first set of conditions in (2.16) and (2.17) holds. To complete the construction, we
define qr in the following way:

qr(s) =

{
p (sj)

T xr + (sign µj)
(
βr + v̄ − ūTxr

)
, if s = sj, j ∈ J,

p(s)Txr +
(
βr + v̄ − uTxr

)
, if s ∈ S \ {sj, j ∈ J} .

So, (2.19) gives us |qr(s)− q(s)| ≤ εr for all s ∈ S and, moreover,

|qr(s) − p(s)Txr| = βr + v̄ − ūTxr for s ∈ S.

Hence, {(br, qr)} converges to (b, q) and also the second conditions in (2.16) and (2.17) hold, which
completes the proof.

From the theorem just proved and the formula (1.2) we have

Corollary 2.5. Let (x̄, (b, q)) ∈ gph F . Then

reg F(x̄|(b, q)) =

(
inf
{
‖u‖∗ |

(
u

uTx̄

)
∈ E(b, q)

})−1

.

3 Radius Theorem and Distance to Infeasibility

In this section we first prove a radius theorem of the form of the equality (1.5) for the mapping F
defined in (1.7). The radius of metric regularity of this mapping is defined as

rad F(x̄|(b, q)) = inf
l∈L(IRn ,C(T,IR)×IRS)

{‖l‖ | F + l not metrically regular at x̄ for (b, q) + l(x̄) } .

We write

l (x) =

(
g(·)Tx
h(·)Tx

)
for g ∈ C (T, IRn) and h : S → IRn,

and use the usual operator norm

‖l‖ = max

{
sup
t∈T

‖g(t)‖∗ ,max
s∈S

‖h(s)‖∗
}
.

Theorem 3.1. For any (x̄, (b, q)) ∈ gphF,

(3.1) rad F(x̄|(b, q)) =
1

reg F(x̄|(b, q)) .

Proof. The general Theorem 1.4 gives the inequality ≥, thus it is enough to establish ≤.
This inequality is trivially satisfied if F is not metrically regular at x̄ for (b, q) . Assume that F is
metrically regular. According to Corollary 2.5 we have

(3.2)
1

reg F(x̄|(b, q)) = inf

{
‖u‖∗ |

(
u

uTx̄

)
∈ E(b, q)

}
.
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Let us discuss first the easy case when the set

D :=

{
u |
(

u

uTx̄

)
∈ E(b, q)

}

is empty. In this case the only possibility is that S is empty and that x̄ is a Slater element of
the system {a(t)Tx ≥ b(t), t ∈ T}. Obviously, x̄ is also a Slater element of a system in the form
{(a(t) + g(t))T x ≥ b(t) + g(t)Tx̄, t ∈ T} for any g and then radF (x̄| (b, q)) = ∞. The equality
(3.1) then follows from the convention inf ∅ = ∞.

Consider the case when D 6= ∅. Then, due to the compactness of E (b, q), the right hand side of
(3.2) is attained at some ū. Specifically, we have

(
ū

ūTx̄

)
=
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)

for some λ ∈ IR
(T )
+ and µ ∈ IRS, with

∑
t∈T λ(t) +

∑
s∈S |µ(s)| = 1. Define l : IRn → C (T, IR) × IRS

as

l(x)(t, s) :=

(
−ūTx
(− signµ(s))ūTx

)
for t ∈ T and s ∈ S.

Then we have

∑

t∈T
λ(t)

((
a(t)

b(t)

)
−
(

ū

ūTx̄

))
+
∑

s∈S
µ(s)

((
p(s)

q(s)

)
− (sign µ(s))

(
ū

ūTx̄

))

=

{
∑

t∈T
λ(t)

(
a(t)

b(t)

)
+
∑

s∈S
µ(s)

(
p(s)

q(s)

)}
−
(
∑

t∈T
λ(t) +

∑

s∈S
|µ(s)|

)(
ū

ūTx̄

)

=

(
ū

ūTx̄

)
−
(

u

ūTx̄

)
= 0n+1.

According to Theorem 2.1, the last equality means that F + l is not metrically regular at x̄ for
(b, q) + l (x̄) . Then

radF (x̄| (b, q)) ≤ ‖l‖ = ‖ū‖∗ =
1

reg F (x̄| (b, q))
and hence we obtain the equality (3.1).

As an application of the preceding theorem, in the rest of this section we relate the radius of
metric regularity of a mapping of the form (1.7), with S = ∅ and under certain conditions on the
coefficients, to its distance to infeasibility. We consider a consistent system of the form

(3.3) a(t)Tx ≥ b(t) for all t ∈ T
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and use some conditions and results from [1].
First, we assume that the norm ‖·‖ in IRn+1 has the following property:

∥∥∥∥
(
a

b

)∥∥∥∥ =

∥∥∥∥
(

a

−b

)∥∥∥∥ for all

(
a

b

)
∈ IRn+1.

In particular, this property implies

∥∥∥∥
(
a

b1

)∥∥∥∥ ≤
∥∥∥∥
(
a

b2

)∥∥∥∥ whenever |b1| ≤ |b2|.

Moreover, in IRn we use the norm ‖a‖ :=
∥∥(a

0

)∥∥ . All these properties are equivalent to the corre-
sponding ones for the dual norms, see [1].

We denote by Θ the set of all the linear inequality systems (3.3) and by Θc the subset of Θ
containing all consistent systems in Θ. Theorem 6.2 in [7] gives a characterization of the interior of
Θc in an appropriate topology when all coefficients are perturbed versus the case when only the right
hand side is perturbed. In the latter case the system (3.3) is in int Θc if and only if b ∈ int rgeF,
where F(x) := a(·)Tx − C (T, IR+) , x ∈ IRn. Therefore, the system (3.3) is in int Θc if and only if
consistency is preserved under small perturbations of the right-hand-side coefficients b(t).

From the analysis in [1], the distance to infeasibility of a system from Θc can be written as

(3.4) inf
(g
γ)∈C(T,IR

n+1)

{
sup
t∈T

∥∥∥∥
(
g(t)

γ(t)

)∥∥∥∥
∗

∣∣∣∣
{

(a(t) + g(t))T x ≥ b(t) + γ(t), t ∈ T
}
∈ Θ \ Θc

}
.

The set Θc in this formula can be replaced by int Θc. Theorem 6 in [1] provides a formula for the
distance to infeasibility in terms of the so-called hypographical set defined as

(3.5) H := co

{(
a(t)

b(t)

)
, t ∈ T

}
+ IR+

(
0n
−1

)
,

where

IR+

(
0n
−1

)
:=

{(
0n
λ

)
: λ ≤ 0

}
.

Specifically, Theorem 6 in [1] states that the distance to infeasibility coincides with d‖·‖
∗

(0n+1,H) .
From the definition given in the beginning of this section and by the Robinson-Ursescu theorem

(remembering that the system (3.3) is in int Θc if and only if b ∈ int rge F), the radius of metric
regularity rad F (x̄|b) of the system (3.3) is equal to

(3.6) inf
g∈C(T,IRn)

{
sup
t∈T

‖g(t)‖∗ |
{

(a(t) + g(t))
T
x ≥ b(t) + g(t)Tx̄, t ∈ T

}
∈ Θ \ intΘc

}
.
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Note that, while the definition of the distance to infeasibility assumes arbitrary perturbations of all
the coefficients, the expression for the radius of metric regularity involves specific perturbations of
the right-hand-side only (maintaining the feasibility of x̄ ∈ IRn). In fact, the distance to infeasibility
(3.4) does not coincide in general with the radius of metric regularity (3.6), as the following example
shows:

Example 3.2. Consider the system (3.3) in IR, with a(t) = 1 and b(t) = −1 for all t ∈ T .
The distance to infeasibility in the Euclidean norm is

√
2 while rad F (x̄|b) = ∞ if x̄ > −1 and

rad F (−1|b) = 1.

The following corollary shows that for homogeneous systems (where b(t) = 0, t ∈ T ) both
measures of ill-posedness coincide for x̄ = 0n.

Corollary 3.3. The distance to infeasibility of the system {a(t)Tx ≥ 0, t ∈ T} is equal to
rad F(0n |0T ) as defined in (3.6), where F :IRn

⇒ C (T, IR) is given by F (x) := a(·)Tx− C (T, IR+) .

Proof. According to Theorem 6 in [1] the referred distance to infeasibility is given by d‖·‖
∗

(0n+1,H) ,
where the set H is as in (3.5) with b(t) = 0, and hence

d‖·‖
∗

(0n+1,H) = inf {‖a‖∗ | a ∈ co {a(t), t ∈ T}} .

The last quantity is the same as 1/ reg F (0n | 0T ) , by virtue of Theorem 2.4 and Corollary 2.5, and
also coincides with rad F(0n | 0T ), as a consequence of Theorem 3.1 (or, alternatively, comes from
Theorem 2.9 in [4], since F is sublinear with closed graph).

Consider now the nonhomogeneous case (3.3). For this case one can derive a formula for the
distance to infeasibility on the basis of [4], Corollary 4.5 and Theorem 4.7, where a more general
conic constraint system is considered and a homogenization procedure is proposed to transform
a nonhomogeneous conical system into a homogeneous one. For the semi-infinite system (3.3)
considered here, the form of the homogenized mapping obtained in [4] is as follows:

F̃(x, α) :=

{
a(·)Tx− αb(·) − C (T, IR+) for α ≥ 0,

∅ for α < 0.

This mapping can be used to obtain a formula for the distance to infeasibility in the way shown in
[4].

At the end, we point out another way of computing the distance to infeasibility for the nonho-
mogeneous system (3.3). By inspection, one can check that

d‖·‖
∗

(0n+1,H) = inf

{∥∥∥∥
(

u

[v]−

)∥∥∥∥
∗

∣∣∣∣
(
u

v

)
∈ C (b)

}
,

where H is the hypographical set associated to the system (3.3) and

C (b) := co

{(
a(t)

b(t)

)
, t ∈ T

}
.
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This observation combined with Theorem 2.4, Corollary 2.5 and Theorem 3.1, and an application
of Theorem 6 in [1] for the distance to infeasibility of a system (3.3) being an element of Θc, gives
us the following corollary.

Corollary 3.4. The distance to infeasibility of the system (3.3) is equal to rad F̂(0n |0T ), where

the mapping F̂ : IRn × IR →→ C (C (b) , IR) is given by

F̂(x, α) :=
(
uTx + [v]− α

)
(uv)∈C(b)

− C (C (b) , IR+) .

This corollary provides an alternative way of computing the distance to infeasibility, via the
mapping F̂ which is different from F̃ coming from [4], and is related to another homogenization

procedure for determining the distance to infeasibility of non-homogeneous systems. Specifically, F̂
is associated with the homogeneous system

uTx + [v]− α ≥ 0,

(
u

v

)
∈ C (b) ,

whose distance to infeasibility is the same as the distance to infeasibility for (3.3). It is an open
question which of these formulas would be easier to use for practical computations.

4 Nonlinear constraints

The result obtained for linear semi-infinite systems can easily be extended to nonlinear systems of
the form

(4.1)

{
f(t, x) ≥ b(t) for all t ∈ T,
g(s, x) = q(s) for all s ∈ S,

where f : T ×IRn → IR and g : S×IRn → IR are continuous functions (g for the discrete topology in
S), and the T , S, b and q are the same as before. In order to apply the Lyusternik-Graves theorem
at a given feasible point x̄ for (b, q) and to reduce a system of nonlinear inequalities to linear ones,
we need the following assumption: The function f is strictly differentiable at x̄ uniformly in t ∈ T ,
the latter meaning that

lim sup
x,x′→x̄, x6=x′

sup
t∈T

‖f(t, x) − f(t, x′) −∇xf(t, x̄)(x− x′)‖
‖x− x′‖ = 0,

where ∇xf(t, x̄) is a row vector, and ∇xf(·, x̄) is continuous in T . Define f : IRn → C(T, IR) as

(f(x))(t) = f(t, x) for t ∈ T.

Then straight from the definition of strict differentiability we obtain that the function f is strictly dif-
ferentiable at x̄ with a strict derivative mapping Df(x̄)(t) = ∇xf(t, x̄), t ∈ T, where L(IRn, C(T, IR))
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is identified with C(T, IRn) (see the beginning of Section 3). We also assume that the function g(s, ·)
is strictly differentiable at x̄ for every s ∈ S. Along with the system (4.1) consider the mapping

(4.2) N(x) :=

(
f(·, x)
g(·, x)

)
−
(

C(T, IR+)
0S

)
.

According to the Lyusternik-Graves theorem, Theorem 2.4 and Corollary 2.5, the regularity modulus
of the mapping N is given by the formula

reg N(x̄|(b, q)) = sup
(uv)∈E(b̃,q̃)

regF(uv)
(x̄|0) =

(
inf

{
‖u‖∗ |

(
u

uTx̄

)
∈ E

(
b̃, q̃
)})−1

,

where the mapping F(uv)
is given in Example 1.2 and the set E(b̃, q̃) is defined in (2.1) for

a(t) = ∇xf(t, x̄)T, p(s) = ∇xg(s, x̄)T,

b̃(t) = b(t) − f(t, x̄) + ∇xf(t, x̄)x̄, t ∈ T,

q̃(s) = q(s)− g(s, x̄) + ∇xg(s, x̄)x̄, s ∈ S.
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